論文の概要: Self-Ensemble Post Learning for Noisy Domain Generalization
- arxiv url: http://arxiv.org/abs/2512.10818v1
- Date: Thu, 11 Dec 2025 17:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.479193
- Title: Self-Ensemble Post Learning for Noisy Domain Generalization
- Title(参考訳): 雑音領域一般化のための自己組織化ポストラーニング
- Authors: Wang Lu, Jindong Wang,
- Abstract要約: 本稿では,ノイズに対処する際の既存手法のやり直し方法について検討する。
モデル内の潜在機能には、特定の識別能力があることが分かりました。
本稿では,活用可能な特徴を多様化するセルフアンサンブル・ポストラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 18.4218677759831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While computer vision and machine learning have made great progress, their robustness is still challenged by two key issues: data distribution shift and label noise. When domain generalization (DG) encounters noise, noisy labels further exacerbate the emergence of spurious features in deep layers, i.e. spurious feature enlargement, leading to a degradation in the performance of existing algorithms. This paper, starting from domain generalization, explores how to make existing methods rework when meeting noise. We find that the latent features inside the model have certain discriminative capabilities, and different latent features focus on different parts of the image. Based on these observations, we propose the Self-Ensemble Post Learning approach (SEPL) to diversify features which can be leveraged. Specifically, SEPL consists of two parts: feature probing training and prediction ensemble inference. It leverages intermediate feature representations within the model architecture, training multiple probing classifiers to fully exploit the capabilities of pre-trained models, while the final predictions are obtained through the integration of outputs from these diverse classification heads. Considering the presence of noisy labels, we employ semi-supervised algorithms to train probing classifiers. Given that different probing classifiers focus on different areas, we integrate their predictions using a crowdsourcing inference approach. Extensive experimental evaluations demonstrate that the proposed method not only enhances the robustness of existing methods but also exhibits significant potential for real-world applications with high flexibility.
- Abstract(参考訳): コンピュータビジョンと機械学習は大きな進歩を遂げているが、その堅牢性は、データ分散シフトとラベルノイズの2つの主要な問題によって、依然として疑問視されている。
ドメイン一般化(DG)がノイズに遭遇すると、ノイズラベルは深い層における突発的特徴、すなわち突発的特徴拡大の出現をさらに悪化させ、既存のアルゴリズムの性能が低下する。
本稿では,ドメインの一般化から始まり,ノイズに対処する際の既存手法のやり直し方法について検討する。
モデル内の潜在機能は、特定の識別能力を持ち、異なる潜在機能は、画像の異なる部分に焦点を当てている。
これらの観測結果に基づいて,活用可能な特徴を多様化するためのSelf-Ensemble Post Learning approach (SEPL)を提案する。
具体的には、SEPLは特徴探索トレーニングと予測アンサンブル推論の2つの部分から構成される。
モデルアーキテクチャ内の中間的特徴表現を活用し、複数のプローブ分類器を訓練し、事前訓練されたモデルの能力を完全に活用し、最終的な予測はこれらの多様な分類ヘッドからの出力の統合によって得られる。
雑音ラベルの存在を考慮し、半教師付きアルゴリズムを用いて探索分類器を訓練する。
異なる領域に焦点を当てた探索分類器を考えると,クラウドソーシングの推論手法を用いて予測を統合できる。
実験により,提案手法は既存手法の堅牢性を向上するだけでなく,高い柔軟性を有する実世界のアプリケーションにも有意義な可能性を示すことが示された。
関連論文リスト
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation [15.353256018248103]
LiDARセマンティックセマンティックセマンティクスは、きめ細かいシーン理解を実現するために注目を集めている。
本稿では、標準モデルから派生した分類ミスタケス(LEAK)からLEArnを分離する粗大な設定を提案する。
我々のLEAKアプローチは非常に一般的で、どんなセグメンテーションアーキテクチャにもシームレスに適用できます。
論文 参考訳(メタデータ) (2023-01-26T14:52:30Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
識別的特徴の抽出は、きめ細かい視覚的分類タスクにおいて重要な役割を担っている。
本稿では,画像とトップkの予測クラスを同時に活用する自己評価手法を提案する。
本手法は,CUB200-2011,Stanford Dog,FGVC Aircraft のデータセットに対して,最新の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-21T07:41:27Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
本稿では,ノイズの多い擬似ラベルを限定することで,より優れた一般化能力を持つ特徴表現を学習する手法を提案する。
我々は,古典的な相互学習アーキテクチャの下で,FDL(Feature Diversity Learning)と呼ばれる新しい手法を提案する。
実験の結果,提案するFDL-SDは,複数のベンチマークデータセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-01-25T10:10:48Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
ゼロショット動作認識のための2段階のディープニューラルネットワークを提案する。
サンプリング段階では,授業の動作特徴と単語ベクトルによって訓練されたGAN(Generative Adversarial Network)を利用する。
分類段階において、アクションクラスの単語ベクトルと関連するオブジェクトの関係に基づいて知識グラフを構築する。
論文 参考訳(メタデータ) (2021-05-25T09:34:42Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。