論文の概要: Classifier Reconstruction Through Counterfactual-Aware Wasserstein Prototypes
- arxiv url: http://arxiv.org/abs/2512.10878v1
- Date: Thu, 11 Dec 2025 18:06:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.506966
- Title: Classifier Reconstruction Through Counterfactual-Aware Wasserstein Prototypes
- Title(参考訳): 対実認識ワッサースタインプロトタイプによる分類器の再構築
- Authors: Xuan Zhao, Zhuo Cao, Arya Bangun, Hanno Scharr, Ira Assent,
- Abstract要約: モデル再構成は,両クラスに代表されるサンプルが少なくても,偽物が情報として機能することを認識することで,大幅に改善できることを実証する。
本稿では, ワッサーシュタイン・バリセンタを用いて, 原データと対実データを統合する手法を提案する。
- 参考スコア(独自算出の注目度): 7.568155070224663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations provide actionable insights by identifying minimal input changes required to achieve a desired model prediction. Beyond their interpretability benefits, counterfactuals can also be leveraged for model reconstruction, where a surrogate model is trained to replicate the behavior of a target model. In this work, we demonstrate that model reconstruction can be significantly improved by recognizing that counterfactuals, which typically lie close to the decision boundary, can serve as informative though less representative samples for both classes. This is particularly beneficial in settings with limited access to labeled data. We propose a method that integrates original data samples with counterfactuals to approximate class prototypes using the Wasserstein barycenter, thereby preserving the underlying distributional structure of each class. This approach enhances the quality of the surrogate model and mitigates the issue of decision boundary shift, which commonly arises when counterfactuals are naively treated as ordinary training instances. Empirical results across multiple datasets show that our method improves fidelity between the surrogate and target models, validating its effectiveness.
- Abstract(参考訳): 対実的な説明は、望ましいモデル予測を達成するために必要な最小限の入力変更を特定することで、実用的な洞察を提供する。
解釈可能性の利点の他に、反ファクトはモデル再構成にも利用でき、そこでは代理モデルがターゲットモデルの振る舞いを再現するために訓練される。
本研究は, 決定境界に近い反事実が, 両クラスに代表されるサンプルが少ないにもかかわらず, 情報として機能することを認識することで, モデル再構成を著しく改善できることを実証する。
これはラベル付きデータへのアクセスが制限された設定で特に有益である。
本稿では,ワッサーシュタイン・バリセンタを用いて,原データサンプルと反ファクトアルを結合し,各クラスの基本分布構造を保存する手法を提案する。
このアプローチは代理モデルの品質を高め、意思決定境界シフトの問題を緩和する。
複数のデータセットにまたがる実験結果から,提案手法はサロゲートモデルとターゲットモデル間の忠実度を向上し,その有効性を検証した。
関連論文リスト
- Nonparametric Data Attribution for Diffusion Models [57.820618036556084]
生成モデルのデータ属性は、個々のトレーニング例がモデル出力に与える影響を定量化する。
生成画像とトレーニング画像のパッチレベルの類似性によって影響を測定する非パラメトリック属性法を提案する。
論文 参考訳(メタデータ) (2025-10-16T03:37:16Z) - FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning [4.244188591221394]
本稿では,FedSA(Federated Learning via Semantic Anchors)という新しいフレームワークを提案する。
FedSAは、様々な分類タスクにおいて、既存のプロトタイプベースのFLメソッドを著しく上回っている。
論文 参考訳(メタデータ) (2025-01-09T16:10:03Z) - Exploring Query Efficient Data Generation towards Data-free Model Stealing in Hard Label Setting [38.755154033324374]
データフリーモデルは、ターゲットモデルの構造、パラメータ、トレーニングデータにアクセスすることなく、ターゲットモデルの機能を代替モデルに複製する。
本稿では Query Efficient Data Generation (textbfQEDG) と呼ばれる新しいデータフリーモデルステーリング手法を提案する。
対象モデルの決定境界に密接に一様に整合する十分なサンプルの生成を保証するために、2つの異なる損失関数を導入する。
論文 参考訳(メタデータ) (2024-12-18T03:03:15Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
我々は,ブラックボックスの分類を正当化する対照的な説明を提供する,ポストホックモデルXAI手法を提案する。
CLIMAXと呼ばれる手法は,局所的な分類法に基づく。
LIME, BayLIME, SLIMEなどのベースラインと比較して, 一貫性が向上することを示す。
論文 参考訳(メタデータ) (2023-07-02T22:52:58Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
我々は,2つの一般的な説明手法(Occlusion と Shapley の値)に対して,モデルに依存しない実装を提供し,その複雑なモデルにおいて,完全に異なる属性を強制する。
提案手法は,修正された説明に基づいてトレーニングデータセットを増強することで,モデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-28T15:23:28Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
本稿では,最適化手順をエンドツーエンドの学習プロセスに変換する深層強化学習手法を提案する。
実世界のデータを用いた実験により,本手法はモデルに依存しず,モデル予測からのフィードバックのみに依存することがわかった。
論文 参考訳(メタデータ) (2021-06-04T16:54:36Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。