論文の概要: Computational emotion analysis with multimodal LLMs: Current evidence on an emerging methodological opportunity
- arxiv url: http://arxiv.org/abs/2512.10882v1
- Date: Thu, 11 Dec 2025 18:11:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.509034
- Title: Computational emotion analysis with multimodal LLMs: Current evidence on an emerging methodological opportunity
- Title(参考訳): マルチモーダルLDMを用いた計算的感情分析:新しい方法論的機会の現況
- Authors: Hauke Licht,
- Abstract要約: マルチモーダル大言語モデル (mLLM) は、感情的覚醒の映像ベース分析において評価される。
理想的な状況下では、mLLMsの感情的覚醒評価は非常に信頼性が高いことが分かりました。
しかし、実際の議会討論会での講演者の録音では、mLLMsの覚醒的評価はこの約束を果たせなかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotions are central to politics and analyzing their role in political communication has a long tradition. As research increasingly leverages audio-visual materials to analyze the display of emotions, the emergence of multimodal generative AI promises great advances. However, we lack evidence about the effectiveness of multimodal AI in emotion analysis. This paper addresses this gap by evaluating current multimodal large language models (mLLMs) in video-based analysis of emotional arousal in two complementary data sets of human-labeled video recordings. I find that under ideal circumstances, mLLMs' emotional arousal ratings are highly reliable and show little to know indication of demographic bias. However, in recordings of speakers in real-world parliamentary debates, mLLMs' arousal ratings fail to deliver on this promise with potential negative consequences for downstream statistical inferences. This study therefore underscores the need for continued, thorough evaluation of emerging generative AI methods in political analysis and contributes a suitable replicable framework.
- Abstract(参考訳): 感情は政治の中心であり、政治コミュニケーションにおける彼らの役割を分析することは長い伝統がある。
研究が感情の表示を分析するために音声・視覚素材をますます活用するにつれて、マルチモーダル生成AIの出現は大きな進歩を約束する。
しかし、感情分析におけるマルチモーダルAIの有効性の証拠は欠如している。
本稿では,2つの相補的なビデオ記録データセットにおける感情的覚醒の分析において,現在のマルチモーダル大言語モデル (mLLM) を評価することにより,このギャップを解消する。
理想的な状況下では、mLLMsの感情的覚醒評価は信頼性が高く、人口統計バイアスの兆候をほとんど示さないことが分かりました。
しかし、実際の議会討論における講演者の記録では、mLLMsの覚醒的評価は、下流の統計的推測に潜在的に負の結果をもたらすことなく、この約束を達成できない。
本研究は、政治的分析において、新たな生成AI手法の継続的な、徹底的な評価の必要性を浮き彫りにして、適切な複製可能なフレームワークに寄与するものである。
関連論文リスト
- MME-Emotion: A Holistic Evaluation Benchmark for Emotional Intelligence in Multimodal Large Language Models [108.61337743051483]
MME-Emotionは,MLLMの感情的理解と推論能力の両方を評価するシステムベンチマークである。
MME-Emotionには6000以上のキュレートされたビデオクリップとタスク固有の質問回答(QA)ペアが含まれており、8つの感情的なタスクを定式化するための広いシナリオにまたがっている。
マルチエージェントシステムフレームワークを通じて分析された、感情認識と推論のためのハイブリッドメトリクスを備えた総合評価スイートが組み込まれている。
論文 参考訳(メタデータ) (2025-08-11T03:14:55Z) - Passing the Turing Test in Political Discourse: Fine-Tuning LLMs to Mimic Polarized Social Media Comments [0.0]
本研究では、微調整された大言語モデル(LLM)が、偏光言説を再現し増幅できる範囲について検討する。
Redditから抽出された政治的に課金された議論のキュレートされたデータセットを使用して、オープンソースのLCMを微調整して、コンテキスト認識とイデオロギー的に整合した応答を生成します。
結果は、パルチザンのデータに基づいてトレーニングすると、LLMは高い信頼性と挑発的なコメントを生成でき、しばしば人間によって書かれたものと区別できないことを示唆している。
論文 参考訳(メタデータ) (2025-06-17T15:41:26Z) - Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection [56.644686934050576]
ソーシャルメディアは情報発信の主流となっているが、誤報の急速な拡散を助長している。
従来の誤報検出法は主に表面的な特徴に焦点を合わせ、伝播過程における人間の共感の重要な役割を見落としている。
著者と読者の両方の視点から誤情報を分析するために、認知的・感情的共感を統合したデュアル・アスペクト・共感フレームワーク(DAE)を提案する。
論文 参考訳(メタデータ) (2025-04-24T07:48:26Z) - Enriching Multimodal Sentiment Analysis through Textual Emotional Descriptions of Visual-Audio Content [56.62027582702816]
マルチモーダル・センティメント・アナリティクスは、テキスト、音声、視覚データを融合することで人間の感情を解き放つことを目指している。
しかし、音声やビデオの表現の中で微妙な感情的なニュアンスを認識することは、恐ろしい挑戦だ。
テキストの感情記述に基づくプログレッシブ・フュージョン・フレームワークであるDEVAを紹介する。
論文 参考訳(メタデータ) (2024-12-12T11:30:41Z) - MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Large Language Models Meet Text-Centric Multimodal Sentiment Analysis: A Survey [66.166184609616]
ChatGPTは、テキスト中心のマルチモーダルタスクに大規模言語モデル(LLM)を適用する大きな可能性を開く。
既存のLLMがテキスト中心のマルチモーダル感情分析タスクにどのように適応できるかは、まだ不明である。
論文 参考訳(メタデータ) (2024-06-12T10:36:27Z) - Evaluation of data inconsistency for multi-modal sentiment analysis [20.332527596452625]
感情意味の不整合は、マルチモーダル感情分析におけるユビキタスな課題である。
本研究は、新たな課題を提示し、感情分析システムの今後の発展に有用な洞察を提供する。
論文 参考訳(メタデータ) (2024-06-05T07:11:56Z) - SEGAA: A Unified Approach to Predicting Age, Gender, and Emotion in
Speech [0.0]
この研究は、膨大な応用分野である声道の年齢、性別、感情を予測することを目的としている。
これらの予測のためのディープラーニングモデルを探索するには、本論文で強調された単一、複数出力、シーケンシャルモデルを比較する必要がある。
実験により,複数出力モデルが個々のモデルと相容れない性能を示し,変数と音声入力の複雑な関係を効率よく把握し,実行環境の改善を実現している。
論文 参考訳(メタデータ) (2024-03-01T11:28:37Z) - Video Sentiment Analysis with Bimodal Information-augmented Multi-Head
Attention [7.997124140597719]
本研究では,複数のモダリティの時系列データを含むビデオの感情分析に注目する。
重要な問題は、これらの異種データをどのように融合するかです。
バイモーダル相互作用に基づいて、より重要なバイモーダル特徴はより大きな重みが割り当てられる。
論文 参考訳(メタデータ) (2021-03-03T12:30:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。