論文の概要: SCIR: A Self-Correcting Iterative Refinement Framework for Enhanced Information Extraction Based on Schema
- arxiv url: http://arxiv.org/abs/2512.12337v1
- Date: Sat, 13 Dec 2025 14:07:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.222576
- Title: SCIR: A Self-Correcting Iterative Refinement Framework for Enhanced Information Extraction Based on Schema
- Title(参考訳): SCIR:スキーマに基づく情報抽出のための自己補正反復補正フレームワーク
- Authors: Yushen Fang, Jianjun Li, Mingqian Ding, Chang Liu, Xinchi Zou, Wenqi Yang,
- Abstract要約: LLM(Large Language Model)を利用した情報抽出システムは、優れた機能を示している。
本稿では,新しいユニバーサルIEパラダイムである自己補正反復精錬(SCIR)フレームワークを提案する。
SCIRは3つの主要なタスクで最先端のIEメソッドよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 14.451987449547294
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although Large language Model (LLM)-powered information extraction (IE) systems have shown impressive capabilities, current fine-tuning paradigms face two major limitations: high training costs and difficulties in aligning with LLM preferences. To address these issues, we propose a novel universal IE paradigm, the Self-Correcting Iterative Refinement (SCIR) framework, along with a Multi-task Bilingual (Chinese-English) Self-Correcting (MBSC) dataset containing over 100,000 entries. The SCIR framework achieves plug-and-play compatibility with existing LLMs and IE systems through its Dual-Path Self-Correcting module and feedback-driven optimization, thereby significantly reducing training costs. Concurrently, the MBSC dataset tackles the challenge of preference alignment by indirectly distilling GPT-4's capabilities into IE result detection models. Experimental results demonstrate that SCIR outperforms state-of-the-art IE methods across three key tasks: named entity recognition, relation extraction, and event extraction, achieving a 5.27 percent average improvement in span-based Micro-F1 while reducing training costs by 87 percent compared to baseline approaches. These advancements not only enhance the flexibility and accuracy of IE systems but also pave the way for lightweight and efficient IE paradigms.
- Abstract(参考訳): 大規模言語モデル(LLM)を利用した情報抽出(IE)システムは目覚ましい能力を示しているが、現在の微調整パラダイムには2つの大きな制限がある。
これらの課題に対処するため、我々は、多タスクバイリンガル(中国語)自己修正(MBSC)データセットとともに、新しいユニバーサルIEパラダイムである自己修正反復精錬(SCIR)フレームワークを提案する。
SCIRフレームワークは、Dual-Path Self-Correctingモジュールとフィードバック駆動最適化により、既存のLLMとIEシステムとのプラグイン・アンド・プレイの互換性を実現し、トレーニングコストを大幅に削減する。
同時に、MBSCデータセットは、GPT-4の機能をIE結果検出モデルに間接蒸留することで、優先調整の課題に取り組む。
実験の結果、SCIRは、名前付きエンティティ認識、関係抽出、イベント抽出の3つの主要なタスクで最先端のIEメソッドより優れており、SpatベースのMicro-F1の平均改善率は5.7%、トレーニングコストはベースラインのアプローチに比べて87%低下していることがわかった。
これらの進歩は、IEシステムの柔軟性と精度を高めるだけでなく、軽量で効率的なIEパラダイムの道を開いた。
関連論文リスト
- Bridging VLMs and Embodied Intelligence with Deliberate Practice Policy Optimization [72.20212909644017]
Deliberate Practice Policy Optimization (DPPO) はメタ認知型メタループのトレーニングフレームワークである。
DPPOは教師付き微調整(能力拡張)と強化学習(技能向上)の交互に行う
実証的には、DPPO(Pelican-VL 1.0)で視覚言語を具現化したモデルをトレーニングすると、ベースモデルよりも20.3%パフォーマンスが向上する。
私たちはモデルとコードをオープンソースにして、データとリソースのボトルネックを軽減する最初の体系的なフレームワークを提供しています。
論文 参考訳(メタデータ) (2025-11-20T17:58:04Z) - GRAM-MAMBA: Holistic Feature Alignment for Wireless Perception with Adaptive Low-Rank Compensation [8.217823995127201]
スマートホーム、インテリジェントトランスポート、産業自動化、ヘルスケアに広くデプロイされている、IoT(Internet of Things)の認識には、マルチモーダル融合が不可欠である。
既存のシステムは、しばしば課題に直面している。高モデル複雑さは、リソースに制約のある環境へのデプロイを妨げる。
本稿では,センサ時系列の効率的な処理に線形複雑マンバモデルを用いるGRAM-MAMBAと,モーダル間のペアアライメントを最適化したGRAM行列戦略を提案する。
論文 参考訳(メタデータ) (2025-07-18T10:30:37Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-liteは、強化学習(RL)により最適化されたMixture-of-Experts(MoE)ベースの大規模言語モデルである
我々のアプローチは、挑戦的なベンチマーク上でのSOTA(State-of-the-art)の小規模推論モデルの性能と一致する。
論文 参考訳(メタデータ) (2025-06-17T17:12:34Z) - SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation [12.838593066237452]
大規模言語モデル(LLM)は、トレーニング中に頻繁にセンシティブな情報を記憶し、公開可能なモデルをデプロイする際にリスクを生じさせる。
本稿では, 因果媒介分析と層固有の最適化を組み合わせた, 対象未学習におけるSemEval-2025タスク4の解を提案する。
論文 参考訳(メタデータ) (2025-04-17T15:05:40Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
既存の堅牢なベンチマークデータセットには2つの重要な制限がある。
単一の情報抽出(IE)タスクに対して、限られた範囲の摂動しか生成しない。
LLM(Large Language Models)の強力な生成機能を考慮すると、ruIE-Benchと呼ばれるRobust UIEのための新しいベンチマークデータセットを導入する。
データのうち、 textbf15% しかトレーニングしない場合、3つの IE タスクに対して、平均 textbf7.5% の相対的なパフォーマンス改善につながることを示す。
論文 参考訳(メタデータ) (2025-03-05T05:39:29Z) - PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection [68.8373788348678]
ビジュアルインストラクションチューニングは、事前訓練されたマルチモーダル大言語モデルに人間の指示に従うように適応する。
PRISMは、効率的な視覚的命令選択のための最初のトレーニング不要のフレームワークである。
データ選択とモデルチューニングのエンドツーエンドの時間を従来のパイプラインの30%に短縮する。
論文 参考訳(メタデータ) (2025-02-17T18:43:41Z) - Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models [40.69348434971122]
本稿では,パラメータ効率の高い言語モデルの微調整のための新しい適応ランクアロケーションフレームワークであるFedARAを提案する。
FedARAは、ヘテロジニアスなデータの下で、さまざまなデータセットやモデルに対して平均6.95%から8.49%のベースラインを一貫して上回っている。
各種エッジデバイスの実験では、それぞれ48.90%、46.95%のトレーニング時間とエネルギー消費が大幅に減少している。
論文 参考訳(メタデータ) (2025-01-24T11:19:07Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Task Aware Modulation using Representation Learning: An Approach for Few Shot Learning in Environmental Systems [15.40286222692196]
TAM-RLは異種システムにおける少数ショット学習のための新しいフレームワークである。
2つの実環境データセット上でのTAM-RLの評価を行った。
論文 参考訳(メタデータ) (2023-10-07T07:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。