論文の概要: GRAM-MAMBA: Holistic Feature Alignment for Wireless Perception with Adaptive Low-Rank Compensation
- arxiv url: http://arxiv.org/abs/2507.13803v1
- Date: Fri, 18 Jul 2025 10:30:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.259427
- Title: GRAM-MAMBA: Holistic Feature Alignment for Wireless Perception with Adaptive Low-Rank Compensation
- Title(参考訳): GRAM-MAMBA:適応型低ランク補償を用いた無線知覚のためのホロスティックな特徴アライメント
- Authors: Weiqi Yang, Xu Zhou, Jingfu Guan, Hao Du, Tianyu Bai,
- Abstract要約: スマートホーム、インテリジェントトランスポート、産業自動化、ヘルスケアに広くデプロイされている、IoT(Internet of Things)の認識には、マルチモーダル融合が不可欠である。
既存のシステムは、しばしば課題に直面している。高モデル複雑さは、リソースに制約のある環境へのデプロイを妨げる。
本稿では,センサ時系列の効率的な処理に線形複雑マンバモデルを用いるGRAM-MAMBAと,モーダル間のペアアライメントを最適化したGRAM行列戦略を提案する。
- 参考スコア(独自算出の注目度): 8.217823995127201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal fusion is crucial for Internet of Things (IoT) perception, widely deployed in smart homes, intelligent transport, industrial automation, and healthcare. However, existing systems often face challenges: high model complexity hinders deployment in resource-constrained environments, unidirectional modal alignment neglects inter-modal relationships, and robustness suffers when sensor data is missing. These issues impede efficient and robust multimodal perception in real-world IoT settings. To overcome these limitations, we propose GRAM-MAMBA. This framework utilizes the linear-complexity Mamba model for efficient sensor time-series processing, combined with an optimized GRAM matrix strategy for pairwise alignment among modalities, addressing the shortcomings of traditional single-modality alignment. Inspired by Low-Rank Adaptation (LoRA), we introduce an adaptive low-rank layer compensation strategy to handle missing modalities post-training. This strategy freezes the pre-trained model core and irrelevant adaptive layers, fine-tuning only those related to available modalities and the fusion process. Extensive experiments validate GRAM-MAMBA's effectiveness. On the SPAWC2021 indoor positioning dataset, the pre-trained model shows lower error than baselines; adapting to missing modalities yields a 24.5% performance boost by training less than 0.2% of parameters. On the USC-HAD human activity recognition dataset, it achieves 93.55% F1 and 93.81% Overall Accuracy (OA), outperforming prior work; the update strategy increases F1 by 23% while training less than 0.3% of parameters. These results highlight GRAM-MAMBA's potential for achieving efficient and robust multimodal perception in resource-constrained environments.
- Abstract(参考訳): マルチモーダル融合はIoT(Internet of Things)の認識にとって不可欠であり、スマートホーム、インテリジェントトランスポート、産業自動化、ヘルスケアに広くデプロイされている。
しかし、既存のシステムは、しばしば課題に直面している: 高いモデル複雑さは、リソース制約のある環境におけるデプロイメントを妨げる、一方向のモーダルアライメントは、モーダル間の関係を無視し、センサーデータが欠落しているときに堅牢性に悩まされる。
これらの問題は、実世界のIoT設定において、効率的で堅牢なマルチモーダル認識を妨げる。
これらの制限を克服するため,GRAM-MAMBAを提案する。
このフレームワークは, センサ時系列の効率的な処理に線形複雑度Mambaモデルを用いており, 従来の単一モードアライメントの欠点に対処するため, モーダル間のペアアライメントを最適化したGRAM行列戦略と組み合わせている。
低ランク適応 (LoRA) に着想を得て, 学習後のモダリティの欠如に対処する適応型低ランク層補償戦略を導入する。
この戦略は、事前訓練されたモデルコアと無関係な適応層を凍結し、利用可能なモダリティと融合プロセスに関連するものだけを微調整する。
大規模な実験により、GRAM-MAMBAの有効性が検証された。
SPAWC2021屋内測位データセットでは、事前訓練されたモデルはベースラインよりも誤差が低い。
USC-HADの人間行動認識データセットでは、93.55%のF1と93.81%の総合的精度(OA)を達成し、以前の作業より優れており、更新戦略はF1を23%増加させ、パラメータの0.3%未満のトレーニングを行っている。
これらの結果は,GRAM-MAMBAが資源制約環境において,効率的かつ堅牢なマルチモーダル認識を実現する可能性を強調した。
関連論文リスト
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
リンク予測(LP)は、グラフ機械学習において重要なタスクである。
既存の手法は、疎結合性からの限られた監督を含む重要な課題に直面している。
これらの課題に対処するためのソリューションとして,事前学習について検討する。
論文 参考訳(メタデータ) (2025-08-06T17:10:31Z) - Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - A Lightweight Deep Learning Model for Automatic Modulation Classification using Dual Path Deep Residual Shrinkage Network [0.0]
自動変調分類(AMC)はスペクトル効率を高める上で重要な役割を果たしている。
低複雑性と高い分類精度のバランスをとる軽量AMCモデルの必要性が高まっている。
本稿では,資源制約エッジデバイスに最適化された低複雑さ,軽量深層学習(DL)AMCモデルを提案する。
論文 参考訳(メタデータ) (2025-07-07T00:37:54Z) - AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank Adaption [3.805501490912696]
フェデレートされた微調整は、分散データを使用して下流タスクにファンデーションモデルを適用するための有望なアプローチとして現れている。
大規模言語モデルのための適応的で軽量なファインチューニングフレームワークであるAFLoRAを提案する。
論文 参考訳(メタデータ) (2025-05-30T16:35:32Z) - Communication-Efficient Wireless Federated Fine-Tuning for Large-Scale AI Models [13.742950928229078]
Low-Rank Adaptation (LoRA) は、完全に微調整された大型モデルではなく、コンパクトで低ランクな行列を訓練することでこれらの問題に対処する。
本稿では,学習性能と通信効率の両方を最適化する無線フェデレーションLoRAファインチューニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-01T06:15:38Z) - SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation [12.838593066237452]
大規模言語モデル(LLM)は、トレーニング中に頻繁にセンシティブな情報を記憶し、公開可能なモデルをデプロイする際にリスクを生じさせる。
本稿では, 因果媒介分析と層固有の最適化を組み合わせた, 対象未学習におけるSemEval-2025タスク4の解を提案する。
論文 参考訳(メタデータ) (2025-04-17T15:05:40Z) - Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models [40.69348434971122]
本稿では,パラメータ効率の高い言語モデルの微調整のための新しい適応ランクアロケーションフレームワークであるFedARAを提案する。
FedARAは、ヘテロジニアスなデータの下で、さまざまなデータセットやモデルに対して平均6.95%から8.49%のベースラインを一貫して上回っている。
各種エッジデバイスの実験では、それぞれ48.90%、46.95%のトレーニング時間とエネルギー消費が大幅に減少している。
論文 参考訳(メタデータ) (2025-01-24T11:19:07Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
LLM(Federated Fine-tuning of Pre-trained Large Language Models)は、さまざまなデータセットにまたがるタスク固有の適応を可能にすると同時に、プライバシの保護を可能にする。
本研究では, HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization) を提案する。
テキスト分類タスクの実験結果から,HAFLQはメモリ使用量を31%削減し,通信コストを49%削減し,精度を50%向上し,ベースライン法よりも高速な収束を実現している。
論文 参考訳(メタデータ) (2024-11-10T19:59:54Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。