論文の概要: Empirical Mode Decomposition and Graph Transformation of the MSCI World Index: A Multiscale Topological Analysis for Graph Neural Network Modeling
- arxiv url: http://arxiv.org/abs/2512.12526v1
- Date: Sun, 14 Dec 2025 02:35:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.298663
- Title: Empirical Mode Decomposition and Graph Transformation of the MSCI World Index: A Multiscale Topological Analysis for Graph Neural Network Modeling
- Title(参考訳): MSCI世界指数の実証モード分解とグラフ変換:グラフニューラルネットワークモデリングのためのマルチスケールトポロジ解析
- Authors: Agustín M. de los Riscos, Julio E. Sandubete, Diego Carmona-Fernández, León Beleña,
- Abstract要約: 本研究では,経験的モード分解(EMD)をMSCIワールド指数に適用し,結果の固有モード関数(IMF)をグラフ表現に変換する。
高周波IMFは密度の高い高連結な小世界グラフを産み出すのに対し,低周波IMFはより長い経路長を持つスペーサーネットワークを産み出すことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study applies Empirical Mode Decomposition (EMD) to the MSCI World index and converts the resulting intrinsic mode functions (IMFs) into graph representations to enable modeling with graph neural networks (GNNs). Using CEEMDAN, we extract nine IMFs spanning high-frequency fluctuations to long-term trends. Each IMF is transformed into a graph using four time-series-to-graph methods: natural visibility, horizontal visibility, recurrence, and transition graphs. Topological analysis shows clear scale-dependent structure: high-frequency IMFs yield dense, highly connected small-world graphs, whereas low-frequency IMFs produce sparser networks with longer characteristic path lengths. Visibility-based methods are more sensitive to amplitude variability and typically generate higher clustering, while recurrence graphs better preserve temporal dependencies. These results provide guidance for designing GNN architectures tailored to the structural properties of decomposed components, supporting more effective predictive modeling of financial time series.
- Abstract(参考訳): 本研究では,経験的モード分解(EMD)をMSCIワールドインデックスに適用し,結果の固有モード関数(IMF)をグラフ表現に変換し,グラフニューラルネットワーク(GNN)を用いたモデリングを可能にする。
CEEMDANを用いて、9つのIMFを抽出し、高周波変動を長期的傾向に当てはめる。
各IMFは、自然視認性、水平視認性、再発性、遷移グラフの4つの時系列グラフを使ってグラフに変換される。
トポロジカル解析では、高頻度IMFは高密度で高連結な小世界グラフを生成するのに対し、低頻度IMFはより長い特徴的な経路長を持つスペーサーネットワークを生成する。
可視性に基づく手法は振幅変動に敏感であり、通常は高いクラスタリングを生成するが、繰り返しグラフは時間的依存をよりよく保存する。
これらの結果は、分解されたコンポーネントの構造特性に合わせてGNNアーキテクチャを設計するためのガイダンスを提供し、金融時系列のより効果的な予測モデルを支援する。
関連論文リスト
- Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics [38.53044197103943]
GF-NODEは、空間周波数分解のためのグラフフーリエ変換と、連続時間進化のためのニューラルODEフレームワークを統合する。
GF-NODEは,拡張シミュレーションよりも重要な幾何学的特徴を保ちながら,最先端の精度を実現する。
これらの結果は,MDシミュレーションの強靭性と予測力を改善するために,連続時間モデルによるスペクトル分解のブリッジ化が期待できることを示す。
論文 参考訳(メタデータ) (2024-11-03T15:10:48Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Equivariant Neural Network for Factor Graphs [83.26543234955855]
因子同変ニューラルネットワーク(FE-NBP)と因子同変グラフニューラルネットワーク(FE-GNN)の2つの推論モデルを提案する。
FE-NBPは小さなデータセットで最先端のパフォーマンスを達成する一方、FE-GNNは大規模なデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-09-29T06:54:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。