論文の概要: Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer
- arxiv url: http://arxiv.org/abs/2304.10079v3
- Date: Wed, 02 Oct 2024 13:40:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:16:55.604584
- Title: Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer
- Title(参考訳): エッジ時間状態モデリングと構造強化変換器による動的グラフ表現学習
- Authors: Shengxiang Hu, Guobing Zou, Song Yang, Shiyi Lin, Yanglan Gan, Bofeng Zhang,
- Abstract要約: 本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 5.093187534912688
- License:
- Abstract: Dynamic graph representation learning has emerged as a crucial research area, driven by the growing need for analyzing time-evolving graph data in real-world applications. While recent approaches leveraging recurrent neural networks (RNNs) and graph neural networks (GNNs) have shown promise, they often fail to adequately capture the impact of temporal edge states on inter-node relationships, consequently overlooking the dynamic changes in node features induced by these evolving relationships. Furthermore, these methods suffer from GNNs' inherent over-smoothing problem, which hinders the extraction of global structural features. To address these challenges, we introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning. It first designs a heuristic method to explicitly model edge temporal states by employing different edge types and weights based on the differences between consecutive snapshots, thereby integrating varying edge temporal states into the graph's topological structure. We then propose a structure-reinforced graph transformer that captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm, enabling the extraction of both local and global structural features. Comprehensive experiments on four real-world datasets demonstrate RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
- Abstract(参考訳): 動的グラフ表現学習は、リアルタイムアプリケーションにおける時間進化グラフデータ分析の必要性が高まっているため、重要な研究領域として現れてきた。
近年、リカレントニューラルネットワーク(RNN)とグラフニューラルネットワーク(GNN)を活用するアプローチは、将来性を示しているが、ノード間関係に対する時間的エッジ状態の影響を適切に捉えることができず、結果として、これらの進化する関係によって引き起こされるノード特性の動的変化を見越すことができる。
さらに、これらの手法は、グローバルな構造的特徴の抽出を妨げるGNN固有の過平滑化問題に悩まされる。
これらの課題に対処するために,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を導入する。
まず、連続するスナップショットの違いに基づいて異なるエッジタイプと重みを使い、異なるエッジ時間状態をグラフの位相構造に統合することにより、エッジ時間状態を明示的にモデル化するヒューリスティックな手法を設計する。
次に,グラフトポロジと動的に進化する時間ノードの表現を,局所的および大域的両方の構造特徴を抽出できる構造強化グラフ変換器を提案する。
4つの実世界のデータセットに関する総合的な実験は、RSGTが離散動的グラフ表現学習において優れた性能を示し、動的リンク予測タスクにおける既存の手法を一貫して上回っている。
関連論文リスト
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
論文 参考訳(メタデータ) (2023-10-25T05:26:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
DYnamic graph(TADDY)のためのトランスフォーマーを用いた新しい異常検出フレームワークを提案する。
本フレームワークは,進化するグラフストリームにおいて,各ノードの構造的役割と時間的役割をよりよく表現するための包括的ノード符号化戦略を構築する。
提案するTADDYフレームワークは,4つの実世界のデータセットに対して,最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-18T02:27:19Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。