論文の概要: One Permutation Is All You Need: Fast, Reliable Variable Importance and Model Stress-Testing
- arxiv url: http://arxiv.org/abs/2512.13892v1
- Date: Mon, 15 Dec 2025 20:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.490928
- Title: One Permutation Is All You Need: Fast, Reliable Variable Importance and Model Stress-Testing
- Title(参考訳): 高速で信頼性の高い重要度とモデルストレステスト
- Authors: Albert Dorador,
- Abstract要約: 我々は、複数のランダムな置換を1つの決定論的かつ最適な置換に置き換えることで、置換に基づく重要度の中心原理を維持できる方法を実現する。
実際の家計ファイナンスや信用リスクアプリケーションなど、200近いシナリオでこのアプローチを検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable estimation of feature contributions in machine learning models is essential for trust, transparency and regulatory compliance, especially when models are proprietary or otherwise operate as black boxes. While permutation-based methods are a standard tool for this task, classical implementations rely on repeated random permutations, introducing computational overhead and stochastic instability. In this paper, we show that by replacing multiple random permutations with a single, deterministic, and optimal permutation, we achieve a method that retains the core principles of permutation-based importance while being non-random, faster, and more stable. We validate this approach across nearly 200 scenarios, including real-world household finance and credit risk applications, demonstrating improved bias-variance tradeoffs and accuracy in challenging regimes such as small sample sizes, high dimensionality, and low signal-to-noise ratios. Finally, we introduce Systemic Variable Importance, a natural extension designed for model stress-testing that explicitly accounts for feature correlations. This framework provides a transparent way to quantify how shocks or perturbations propagate through correlated inputs, revealing dependencies that standard variable importance measures miss. Two real-world case studies demonstrate how this metric can be used to audit models for hidden reliance on protected attributes (e.g., gender or race), enabling regulators and practitioners to assess fairness and systemic risk in a principled and computationally efficient manner.
- Abstract(参考訳): マシンラーニングモデルにおける機能コントリビューションの信頼性評価は、特にモデルがプロプライエタリであるか、ブラックボックスとして運用されている場合、信頼性、透明性、規制コンプライアンスに不可欠である。
置換に基づく手法はこのタスクの標準的なツールであるが、古典的な実装は繰り返しランダムな置換に依存し、計算オーバーヘッドと確率的不安定さを導入している。
本稿では,複数のランダムな置換を単一,決定論的,最適な置換に置き換えることで,非ランダムで高速で,より安定な置換を基本原理として保持する手法を実現する。
実世界の家計や信用リスクアプリケーションを含む200近いシナリオにまたがるこのアプローチを検証し、小さなサンプルサイズ、高次元、低信号対雑音比といった課題において、バイアス分散トレードオフの改善と精度を実証する。
最後に, モデルストレステストのための自然な拡張として, 特徴相関を明示的に考慮するシステム変数重要度について紹介する。
このフレームワークは、ショックや摂動が相関した入力を通じてどのように伝播するかを定量化する透過的な方法を提供する。
2つの実世界のケーススタディは、このメトリクスが保護された属性(例えば、性別や人種)に隠れた依存のモデルを評価するのにどのように使えるかを示し、規制当局や実践者は、原則的かつ計算学的に、公正さとシステム的リスクを評価することができる。
関連論文リスト
- Revisiting Randomization in Greedy Model Search [16.15551706774035]
特徴サブサンプリングによってランダム化される欲求前方選択推定器のアンサンブルを提案し,解析する。
計算効率を大幅に向上させる動的プログラミングに基づく新しい実装を設計する。
ランダム化アンサンブルが縮小と類似しているという一般的な信念とは対照的に、トレーニングエラーと自由度を同時に低減できることが示される。
論文 参考訳(メタデータ) (2025-06-18T17:13:53Z) - Network Inversion for Generating Confidently Classified Counterfeits [11.599035626374409]
視覚分類において、自信のある予測をもたらす入力を生成することは、モデルの振る舞いと信頼性を理解するための鍵となる。
我々はネットワーク・インバージョン・テクニックを拡張してCCC(Confidently Classified Counterfeits)を生成する。
CCCは信頼性に関するモデル中心の視点を提供し、モデルが完全に合成されたアウト・オブ・ディストリビューション・インプットに高い信頼を割り当てることを明らかにする。
論文 参考訳(メタデータ) (2025-03-26T03:26:49Z) - Quantifying Uncertainty and Variability in Machine Learning: Confidence Intervals for Quantiles in Performance Metric Distributions [0.17265013728931003]
マシンラーニングモデルは、信頼性と堅牢性が重要であるアプリケーションで広く使用されている。
モデル評価は、しばしば、モデルパフォーマンスの固有の変数をキャプチャできないパフォーマンスメトリクスの単一ポイント推定に依存します。
この貢献は、そのような分布を分析するために量子と信頼区間を使うことを探求し、モデルの性能とその不確実性についてより完全な理解を提供する。
論文 参考訳(メタデータ) (2025-01-28T13:21:34Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Robustness of Machine Learning Models Beyond Adversarial Attacks [0.0]
本稿では,MLモデルのロバスト性を決定する上で,敵対的ロバスト性や近縁なメトリクスが必ずしも有効な指標ではないことを示す。
アプリケーション毎に個別に入力データの摂動をモデル化するフレキシブルなアプローチを提案する。
これは、現実の摂動が予測を変える可能性を計算する確率論的アプローチと組み合わせられる。
論文 参考訳(メタデータ) (2022-04-21T12:09:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
このようなリスク不変予測器の学習に重要な課題はショートカット学習である。
この課題に対処するために、フレキシブルで因果的なアプローチを提案する。
この因果的動機付けされた正規化スキームが堅牢な予測子を生み出すことを理論的および実証的に示す。
論文 参考訳(メタデータ) (2021-05-13T16:58:45Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。