論文の概要: Multilingual and Continuous Backchannel Prediction: A Cross-lingual Study
- arxiv url: http://arxiv.org/abs/2512.14085v1
- Date: Tue, 16 Dec 2025 04:50:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.590626
- Title: Multilingual and Continuous Backchannel Prediction: A Cross-lingual Study
- Title(参考訳): 多言語および連続したバックチャネル予測:言語横断的研究
- Authors: Koji Inoue, Mikey Elmers, Yahui Fu, Zi Haur Pang, Taiga Mori, Divesh Lala, Keiko Ochi, Tatsuya Kawahara,
- Abstract要約: 日本語,英語,中国語に対して連続したバックチャネル予測モデルを提案する。
このモデルは、言語・ユニバーサル・キューと言語固有のタイミングパターンの両方を学習する。
トレーニングされたモデルをリアルタイム処理ソフトウェアに統合し、CPUのみの推論を示す。
- 参考スコア(独自算出の注目度): 21.569769679639805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a multilingual, continuous backchannel prediction model for Japanese, English, and Chinese, and use it to investigate cross-linguistic timing behavior. The model is Transformer-based and operates at the frame level, jointly trained with auxiliary tasks on approximately 300 hours of dyadic conversations. Across all three languages, the multilingual model matches or surpasses monolingual baselines, indicating that it learns both language-universal cues and language-specific timing patterns. Zero-shot transfer with two-language training remains limited, underscoring substantive cross-lingual differences. Perturbation analyses reveal distinct cue usage: Japanese relies more on short-term linguistic information, whereas English and Chinese are more sensitive to silence duration and prosodic variation; multilingual training encourages shared yet adaptable representations and reduces overreliance on pitch in Chinese. A context-length study further shows that Japanese is relatively robust to shorter contexts, while Chinese benefits markedly from longer contexts. Finally, we integrate the trained model into a real-time processing software, demonstrating CPU-only inference. Together, these findings provide a unified model and empirical evidence for how backchannel timing differs across languages, informing the design of more natural, culturally-aware spoken dialogue systems.
- Abstract(参考訳): 日本語,英語,中国語に対して,多言語・連続的な逆チャネル予測モデルを提案する。
モデルはTransformerベースで、フレームレベルで動作し、約300時間のダイアド会話で補助的なタスクを共同で訓練する。
3つの言語全体にわたって、多言語モデルは単言語ベースラインと一致し、言語ユニバーサルキューと言語固有のタイミングパターンの両方を学ぶことを示す。
2言語トレーニングによるゼロショット転送は制限されており、静的な言語間差を暗示している。
日本語は短期的な言語情報に依存しているのに対し、英語と中国語は沈黙の持続時間や韻律的変動に敏感である。
文脈長の研究では、日本語は短い文脈に対して比較的頑丈であるのに対し、中国語は長い文脈から顕著に恩恵を受けていることが示されている。
最後に、トレーニングされたモデルをリアルタイム処理ソフトウェアに統合し、CPUのみの推論を示す。
これらの知見は共に、バックチャネルのタイミングが言語によってどのように異なるかを示す統一されたモデルと実証的な証拠を提供し、より自然で文化的に認識された音声対話システムの設計を通知する。
関連論文リスト
- Mitigating the Linguistic Gap with Phonemic Representations for Robust Cross-lingual Transfer [26.014079273740485]
多言語理解の改善へのアプローチは、高リソース言語と低リソース言語の間の大きなパフォーマンスギャップに悩まされることが多い。
本研究は,12言語を対象とした3つの言語間タスクに関する実験である。
音韻表現は、正書法表現と比較して言語間の類似性が高い。
論文 参考訳(メタデータ) (2024-02-22T04:41:52Z) - Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment [42.624862172666624]
本稿では,一対の翻訳文を利用する単純な言語間アライメントフレームワークを提案する。
多言語コントラスト学習を通じて、異なる言語にまたがる内部文表現を整合させる。
実験結果から,事前学習トークンが0.1文未満であっても,アライメントフレームワークは生成言語モデルの言語間相互性を大幅に向上させることが明らかとなった。
論文 参考訳(メタデータ) (2023-11-14T11:24:08Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - First Align, then Predict: Understanding the Cross-Lingual Ability of
Multilingual BERT [2.2931318723689276]
言語間移動は、ある言語への関心のタスクを微調整し、ある言語を個別に評価することから生じる。
多言語bertは,マルチリンガルエンコーダとタスク固有言語非依存予測器の2つのサブネットワークの積み重ねと見なすことができる。
エンコーダは言語間移動に不可欠であり、微調整中はほとんど変化しないが、タスク予測器は転写にほとんど重要ではなく、微調整時に赤くなる。
論文 参考訳(メタデータ) (2021-01-26T22:12:38Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。