論文の概要: ComMark: Covert and Robust Black-Box Model Watermarking with Compressed Samples
- arxiv url: http://arxiv.org/abs/2512.15641v1
- Date: Tue, 16 Dec 2025 05:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 17:06:27.08416
- Title: ComMark: Covert and Robust Black-Box Model Watermarking with Compressed Samples
- Title(参考訳): ComMark:圧縮サンプル付きブラックボックスモデルウォーターマーキング
- Authors: Yunfei Yang, Xiaojun Chen, Zhendong Zhao, Yu Zhou, Xiaoyan Gu, Juan Cao,
- Abstract要約: ComMarkは、新しいブラックボックスモデルウォーターマーキングフレームワークである。
我々はComMarkが隠蔽性とロバスト性の両方において最先端のパフォーマンスを達成することを示す。
画像認識を超えて、音声認識、感情分析、画像生成、画像キャプション、ビデオ認識などのタスクにも適用可能である。
- 参考スコア(独自算出の注目度): 14.929889375744368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of deep learning has turned models into highly valuable assets due to their reliance on massive data and costly training processes. However, these models are increasingly vulnerable to leakage and theft, highlighting the critical need for robust intellectual property protection. Model watermarking has emerged as an effective solution, with black-box watermarking gaining significant attention for its practicality and flexibility. Nonetheless, existing black-box methods often fail to better balance covertness (hiding the watermark to prevent detection and forgery) and robustness (ensuring the watermark resists removal)-two essential properties for real-world copyright verification. In this paper, we propose ComMark, a novel black-box model watermarking framework that leverages frequency-domain transformations to generate compressed, covert, and attack-resistant watermark samples by filtering out high-frequency information. To further enhance watermark robustness, our method incorporates simulated attack scenarios and a similarity loss during training. Comprehensive evaluations across diverse datasets and architectures demonstrate that ComMark achieves state-of-the-art performance in both covertness and robustness. Furthermore, we extend its applicability beyond image recognition to tasks including speech recognition, sentiment analysis, image generation, image captioning, and video recognition, underscoring its versatility and broad applicability.
- Abstract(参考訳): ディープラーニングの急速な進歩は、膨大なデータと高価なトレーニングプロセスに依存しているため、モデルが非常に価値の高い資産になった。
しかし、これらのモデルは、漏洩や盗難に対してますます脆弱になり、堅牢な知的財産保護の必要性が浮き彫りになっている。
モデル透かしは効果的な解決策として現れており、黒箱透かしはその実用性と柔軟性において重要な注目を集めている。
それでも、既存のブラックボックス方式では、隠蔽性(検出と偽造を防ぐために透かしを隠蔽する)と堅牢性(透かしが除去に抵抗することを保証する)のバランスが良くないことが多い。
本稿では,周波数領域変換を利用した新しいブラックボックスモデル透かしフレームワークComMarkを提案する。
透かしの堅牢性をさらに向上するため,本手法では,模擬攻撃シナリオと訓練時の類似性損失を取り入れた。
さまざまなデータセットやアーキテクチャにわたる包括的な評価は、ComMarkが隠蔽性と堅牢性の両方で最先端のパフォーマンスを達成することを示す。
さらに、音声認識、感情分析、画像生成、画像キャプション、画像認識といったタスクにも適用範囲を広げ、その汎用性と幅広い適用性を示す。
関連論文リスト
- Diffusion-Based Image Editing for Breaking Robust Watermarks [4.273350357872755]
強力な拡散ベースの画像生成と編集技術は、堅牢なウォーターマーキングスキームに新たな脅威をもたらす。
拡散駆動型画像再生プロセスでは,画像内容の保存中に埋め込み透かしを消去できることを示す。
生成中の透かし信号に特異的な誘導拡散攻撃を導入し,透かし検出性を著しく低下させた。
論文 参考訳(メタデータ) (2025-10-07T14:34:42Z) - OptMark: Robust Multi-bit Diffusion Watermarking via Inference Time Optimization [66.69924980864053]
拡散復調過程の中間潜水器に頑健なマルチビット透かしを埋め込む最適化手法である OptMark を提案する。
OptMarkは、生成攻撃に対して早期に構造的な透かしを挿入し、画像変換に耐えるために遅れて詳細な透かしを挿入する。
実験結果から,OptMarkは有意変換,幾何変換,編集,再生攻撃に対する堅牢なレジリエンスを確保しつつ,目に見えないマルチビット透かしを実現することが示された。
論文 参考訳(メタデータ) (2025-08-29T15:50:59Z) - TAG-WM: Tamper-Aware Generative Image Watermarking via Diffusion Inversion Sensitivity [76.98973481600002]
本稿では,TAG-WMと命名されたタンパ認識画像ウォーターマーキング手法を提案する。
提案手法は、4つのキーモジュールからなる: 生成品質を保ちつつ、著作権と局所化の透かしを潜伏空間に埋め込むためのデュアルマークジョイントサンプリング (DMJS) アルゴリズム。
実験結果から,TAG-WMは歪み下においても,改質性および局所化能力の両面において最先端性能を達成できることが示された。
論文 参考訳(メタデータ) (2025-06-30T03:14:07Z) - Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models [50.73220224678009]
ウォーターマーキングは、人工知能モデルによって生成された合成画像の起源を検証するために使用できる。
近年の研究では, 対象画像から表層画像への透かしを, 対角的手法を用いてフォージできることが示されている。
本稿では,最適化フリーで普遍的な透かし偽造のリスクが大きいことを明らかにする。
我々のアプローチは攻撃範囲を大きく広げ、現在の透かし技術の安全性により大きな課題をもたらす。
論文 参考訳(メタデータ) (2025-06-06T12:08:02Z) - Bridging Knowledge Gap Between Image Inpainting and Large-Area Visible Watermark Removal [57.84348166457113]
本稿では,事前学習した画像の塗装モデルの表現能力を活用する新しい特徴適応フレームワークを提案する。
本手法は, 透かしの残像の残像を塗布バックボーンモデルに流し込むことにより, 透かしと透かし除去の知識ギャップを埋めるものである。
高品質な透かしマスクへの依存を緩和するために,粗い透かしマスクを用いて推論プロセスを導出する新たな訓練パラダイムを導入する。
論文 参考訳(メタデータ) (2025-04-07T02:37:14Z) - Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking [18.251123923955397]
自己回帰学習はテキストと画像の生成において支配的なアプローチとなり、高い効率と視覚的品質を提供する。
拡散モデルのために設計された既存の透かし法は、しばしばVARモデルのシーケンシャルな性質に適応するのに苦労する。
自動回帰テキスト・画像生成に特化して設計された最初のウォーターマーキングフレームワークであるSafe-VARを提案する。
論文 参考訳(メタデータ) (2025-03-14T11:45:10Z) - Dynamic watermarks in images generated by diffusion models [46.1135899490656]
高忠実度テキストから画像への拡散モデルが視覚コンテンツ生成に革命をもたらしたが、その普及は重大な倫理的懸念を提起している。
本稿では,拡散モデルのための新しい多段階透かしフレームワークを提案する。
我々の研究は、モデルオーナシップの検証と誤用防止のためのスケーラブルなソリューションを提供することで、AI生成コンテンツセキュリティの分野を前進させます。
論文 参考訳(メタデータ) (2025-02-13T03:23:17Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - A Resilient and Accessible Distribution-Preserving Watermark for Large Language Models [65.40460716619772]
本研究は,textbfDistribution-textbf Preserving (DiP)ウォーターマークの重要性に焦点をあてる。
現在の戦略とは対照的に,提案したDiPmarkは透かし中に元のトークン分布を同時に保存する。
言語モデルAPIにアクセスせずに検出可能で(アクセス可能)、トークンの適度な変更に対して確実に堅牢である。
論文 参考訳(メタデータ) (2023-10-11T17:57:35Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。