論文の概要: Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results
- arxiv url: http://arxiv.org/abs/2512.16013v1
- Date: Wed, 17 Dec 2025 22:40:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-19 18:10:31.842587
- Title: Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results
- Title(参考訳): 知識指導型機械学習のための微調整サイト校正に向けて:結果の概要
- Authors: Ruolei Zeng, Arun Sharma, Shuai An, Mingzhou Yang, Shengya Zhang, Licheng Liu, David Mulla, Shashi Shekhar,
- Abstract要約: FTBSC-KGMLは、事前学習と微調整に基づく空間変数認識、知識誘導型機械学習フレームワークである。
移動学習と空間的不均一性を活用しながら、土地の放出を推定する。
これは純粋にグローバルなモデルよりも低い検証誤差と説明力の整合性を達成する。
- 参考スコア(独自算出の注目度): 8.556682505387199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and cost-effective quantification of the agroecosystem carbon cycle at decision-relevant scales is essential for climate mitigation and sustainable agriculture. However, both transfer learning and the exploitation of spatial variability in this field are challenging, as they involve heterogeneous data and complex cross-scale dependencies. Conventional approaches often rely on location-independent parameterizations and independent training, underutilizing transfer learning and spatial heterogeneity in the inputs, and limiting their applicability in regions with substantial variability. We propose FTBSC-KGML (Fine-Tuning-Based Site Calibration-Knowledge-Guided Machine Learning), a pretraining- and fine-tuning-based, spatial-variability-aware, and knowledge-guided machine learning framework that augments KGML-ag with a pretraining-fine-tuning process and site-specific parameters. Using a pretraining-fine-tuning process with remote-sensing GPP, climate, and soil covariates collected across multiple midwestern sites, FTBSC-KGML estimates land emissions while leveraging transfer learning and spatial heterogeneity. A key component is a spatial-heterogeneity-aware transfer-learning scheme, which is a globally pretrained model that is fine-tuned at each state or site to learn place-aware representations, thereby improving local accuracy under limited data without sacrificing interpretability. Empirically, FTBSC-KGML achieves lower validation error and greater consistency in explanatory power than a purely global model, thereby better capturing spatial variability across states. This work extends the prior SDSA-KGML framework.
- Abstract(参考訳): 温暖化と持続可能な農業にとって、決定関連スケールでのアグロ生態系の炭素循環の正確かつ費用効率の定量化が不可欠である。
しかし、異種データと複雑なクロススケール依存関係を含むため、この分野での伝達学習と空間変動の活用は困難である。
従来のアプローチは、場所に依存しないパラメータ化と独立したトレーニングに依存し、入力における伝達学習と空間的不均一性を未利用にし、大きな変数を持つ領域における適用性を制限している。
本研究では,FTBSC-KGML(Fine-Tuning-based Site Calibration-Knowledge-Guided Machine Learning)を提案する。
FTBSC-KGMLは、遠隔センシングGPP、気候、土壌共変物質を複数の中西部で収集した訓練済み微調整プロセスを用いて、移動学習と空間的不均一性を活用しながら、土地の放出を推定する。
鍵となるコンポーネントは空間的異質性を考慮した伝達学習スキームであり、これは各状態や部位に微調整して位置認識表現を学習するグローバル事前学習モデルであり、解釈性を犠牲にすることなく、限られたデータの下で局所的精度を向上させる。
実証的に、FTBSC-KGMLは純粋に大域モデルよりも低い検証誤差と説明力の整合性を達成し、状態間の空間的変動をよりよく捉える。
この作業は、以前のSDSA-KGMLフレームワークを拡張した。
関連論文リスト
- AFCL: Analytic Federated Continual Learning for Spatio-Temporal Invariance of Non-IID Data [45.66391633579935]
Federated Continual Learning (FCL)は、分散クライアントがオンラインタスクストリームからグローバルモデルを協調的にトレーニングすることを可能にする。
FCL法は,分散クライアント間の空間的データ不均一性とオンラインタスク間の時間的データ不均一性の両方の課題に直面している。
凍結抽出特徴量から解析的解(すなわち閉形式)を導出することにより,解析的フェデレート連続学習(AFCL)と呼ばれる勾配のない手法を提案する。
論文 参考訳(メタデータ) (2025-05-18T05:55:09Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning [4.414885369283509]
多様な土壌特性と気候データの入力を考慮し,正確な土地排出予測モデルの構築を目指していた。
SDSA-KGMLモデルは中西部地域の特定状態に対して高い局所精度を達成する。
論文 参考訳(メタデータ) (2025-02-20T18:52:24Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
本研究は,自己指導型コントラスト学習を通じて,マルチモーダル特徴間の地理的関連を学習することを目的とした,新しいアプローチを提案する。
提案手法は、2つの異なる大規模データセットに対して厳密なテストを行っている。
論文 参考訳(メタデータ) (2023-08-07T13:44:44Z) - Improve State-Level Wheat Yield Forecasts in Kazakhstan on GEOGLAM's EO
Data by Leveraging A Simple Spatial-Aware Technique [1.433758865948252]
我々は,カザフスタンにおけるクロスリージョン収率の不均一性に明示的に対処する,ステートワイド加法バイアスと呼ばれる手法を提案し,検討する。
本手法では, RMSE全体の8.9%, 州別RMSEの28.37%を削減した。
状態ワイド加算バイアスの有効性は、機械学習の性能を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2023-06-01T19:35:13Z) - Multi-Level Branched Regularization for Federated Learning [46.771459325434535]
本稿では,各局所モデルにおける複数の補助的分岐を,複数の異なるレベルで局所的および大域的ワークをグラフトすることで構築する,新しいアーキテクチャ正規化手法を提案する。
従来の手法に比べて精度と効率の点で顕著な性能向上を示す。
論文 参考訳(メタデータ) (2022-07-14T13:59:26Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Source-Free Progressive Graph Learning for Open-Set Domain Adaptation [44.63301903324783]
オープンセットドメイン適応(OSDA)は多くの視覚認識タスクで注目されている。
目的仮説空間を共有空間と未知の部分空間に分解するプログレッシブグラフ学習(PGL)フレームワークを提案する。
また、ソースとターゲットドメインの共存を前提としない、より現実的なオープンソースフリーなオープンセットドメイン適応(SF-OSDA)に取り組みます。
論文 参考訳(メタデータ) (2022-02-13T01:19:41Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
深層学習におけるデータ不均衡やラベルノイズ問題に対処するための証明可能な手法(ABSGD)を提案する。
本手法は運動量SGDの簡易な修正であり,各試料に個別の重み付けを行う。
ABSGDは追加コストなしで他の堅牢な損失と組み合わせられるほど柔軟である。
論文 参考訳(メタデータ) (2020-12-13T03:41:52Z) - From calibration to parameter learning: Harnessing the scaling effects
of big data in geoscientific modeling [2.9897531698031403]
本稿では,入力とパラメータのグローバルマッピングを効率的に学習する,微分可能なパラメータ学習フレームワークを提案する。
トレーニングデータが増加するにつれて、dPLはより良いパフォーマンス、より物理的コヒーレンス、より良い一般化性を達成する。
土壌の水分と流水から学んだ例を示し,dPLが既存の進化的・地域的手法を著しく上回った。
論文 参考訳(メタデータ) (2020-07-30T21:38:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。