論文の概要: Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2512.16147v1
- Date: Thu, 18 Dec 2025 04:00:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-19 18:10:31.908143
- Title: Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning
- Title(参考訳): ヘタフルストーリーにおけるフェイクナラティブのデコード:マルチタスク学習によるデュアルヘッドRoBERTaモデル
- Authors: Yash Bhaskar, Sankalp Bahad, Parameswari Krishnamurthy,
- Abstract要約: ソーシャルメディアプラットフォームは、グローバルな接続を可能にする一方で、有害なコンテンツの急速な拡散のハブとなっている。
本稿では,2つの主要なサブタスクに対処し,共有タスク用に開発したシステムについて述べる。
高度な自然言語処理技術とドメイン固有の事前訓練を組み合わせることで、両方のタスクのパフォーマンスを向上させる。
- 参考スコア(独自算出の注目度): 1.9371675344367494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms, while enabling global connectivity, have become hubs for the rapid spread of harmful content, including hate speech and fake narratives \cite{davidson2017automated, shu2017fake}. The Faux-Hate shared task focuses on detecting a specific phenomenon: the generation of hate speech driven by fake narratives, termed Faux-Hate. Participants are challenged to identify such instances in code-mixed Hindi-English social media text. This paper describes our system developed for the shared task, addressing two primary sub-tasks: (a) Binary Faux-Hate detection, involving fake and hate speech classification, and (b) Target and Severity prediction, categorizing the intended target and severity of hateful content. Our approach combines advanced natural language processing techniques with domain-specific pretraining to enhance performance across both tasks. The system achieved competitive results, demonstrating the efficacy of leveraging multi-task learning for this complex problem.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、グローバルな接続を可能にする一方で、ヘイトスピーチや偽の物語などの有害コンテンツを急速に広めるハブとなっている。
Faux-Hate共有タスクは、Faux-Hateと呼ばれる偽の物語によって引き起こされるヘイトスピーチの生成という特定の現象を検出することに焦点を当てている。
参加者は、コードミキシングされたヒンディー語と英語のソーシャルメディアテキストでそのような事例を識別する。
本稿では,2つのタスクに対処する共有タスクのためのシステムについて述べる。
(a)ニセモノとヘイトスピーチの分類を含む二項偽ヘイト検出
(b)ターゲットと深刻度予測において、ヘイトフルコンテンツの意図されたターゲットと重症度を分類する。
提案手法は,高度な自然言語処理技術とドメイン固有の事前学習を組み合わせることで,両タスクのパフォーマンスを向上させる。
このシステムは、この複雑な問題に対してマルチタスク学習を活用する効果を実証し、競争的な結果を得た。
関連論文リスト
- Synthetic Voices, Real Threats: Evaluating Large Text-to-Speech Models in Generating Harmful Audio [63.18443674004945]
この研究は、TSシステムを利用して有害なコンテンツを含む音声を生成する、コンテンツ中心の脅威を探究する。
HARMGENは、これらの課題に対処する2つのファミリーにまとめられた5つの攻撃群である。
論文 参考訳(メタデータ) (2025-11-14T03:00:04Z) - Double Mixture: Towards Continual Event Detection from Speech [60.33088725100812]
音声イベント検出は、セマンティックイベントと音響イベントの両方のタグ付けを含むマルチメディア検索に不可欠である。
本稿では, 音声イベント検出における主な課題として, 過去の出来事を忘れることなく新たな事象を連続的に統合すること, 音響イベントからの意味のゆがみについて述べる。
本稿では,適応性を向上し,忘れることを防止するために,音声の専門知識と堅牢な記憶機構を融合する新しい手法「ダブルミキチャー」を提案する。
論文 参考訳(メタデータ) (2024-04-20T06:32:00Z) - Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder [1.8734449181723825]
ヘイトスピーチと攻撃的言語検出に関する既存の研究は、事前学習されたトランスフォーマーモデルに基づいて有望な結果をもたらす。
本稿では,他コーパスから抽出した外的感情特徴を組み合わせたマルチタスク共同学習手法を提案する。
以上の結果から,感情的な知識が,データセット間のヘイトスピーチや攻撃的言語をより確実に識別する上で有効であることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:31:06Z) - Improved two-stage hate speech classification for twitter based on Deep
Neural Networks [0.0]
ヘイトスピーチ(Hate speech)は、虐待的な言葉の使用を含む、オンラインハラスメントの一種である。
この研究で提案するモデルは、LSTMニューラルネットワークアーキテクチャに基づく既存のアプローチの拡張である。
本研究は,16kツイートの公開コーパスで評価された2段階目の提案手法の性能比較を含む。
論文 参考訳(メタデータ) (2022-06-08T20:57:41Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
本稿では,自然言語推論フレームワークにおけるヘイトスピーチ検出を強化するために,感情ハッシュタグを活用する新しい手法を提案する。
我々は,(1)オンライン投稿と感情ハッシュタグ間の意味的関係推論,(2)これらの投稿に対する感情分類の2つのタスクを同時に実行する新しいフレームワークSRICを設計する。
論文 参考訳(メタデータ) (2022-04-14T15:03:35Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
最近の最先端のニューラルテキストマッチングモデル(PLM)は、様々なタスクに一般化することが難しい。
我々は、特殊化一般化訓練戦略を採用し、それをMatch-Promptと呼ぶ。
特殊化段階では、異なるマッチングタスクの記述はいくつかのプロンプトトークンにマッピングされる。
一般化段階において、テキストマッチングモデルは、多種多様なマッチングタスクを訓練することにより、本質的なマッチング信号を探索する。
論文 参考訳(メタデータ) (2022-04-06T11:01:08Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Leveraging Transformers for Hate Speech Detection in Conversational
Code-Mixed Tweets [36.29939722039909]
本稿では,HASOC 2021サブタスク2のためのMIDAS-IIITDチームによって提案されたシステムについて述べる。
これは、Hindi- Englishのコードミキシングされた会話からヘイトスピーチを検出することに焦点を当てた最初の共有タスクの1つである。
Indic-BERT,XLM-RoBERTa,Multilingual BERTのハード投票アンサンブルがマクロF1スコア0.7253を達成した。
論文 参考訳(メタデータ) (2021-12-18T19:27:33Z) - AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection [5.649040805759824]
本論文では,感情分類によるヘイトスピーチ検出と,二次的関連タスクとしてのターゲット同定を共同学習するマルチタスク学習型モデルであるAngryBERTを提案する。
実験の結果,AngryBERTは最先端のシングルタスク学習やマルチタスク学習のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-03-14T16:17:26Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。