論文の概要: Multivariate Uncertainty Quantification with Tomographic Quantile Forests
- arxiv url: http://arxiv.org/abs/2512.16383v1
- Date: Thu, 18 Dec 2025 10:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-19 18:10:32.009218
- Title: Multivariate Uncertainty Quantification with Tomographic Quantile Forests
- Title(参考訳): トモグラフィ林による多変量不確かさの定量化
- Authors: Takuya Kanazawa,
- Abstract要約: Tomographic Quantile Forests (TQF) は、多変量目標に対する非パラメトリック、不確実性を考慮した木に基づく回帰モデルである。
TQFは多くの方向の量子を集約し、多変量条件分布を再構成する。
合成および実世界のデータセット上でTQFを評価し、ソースコードをGitHubでリリースする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying predictive uncertainty is essential for safe and trustworthy real-world AI deployment. Yet, fully nonparametric estimation of conditional distributions remains challenging for multivariate targets. We propose Tomographic Quantile Forests (TQF), a nonparametric, uncertainty-aware, tree-based regression model for multivariate targets. TQF learns conditional quantiles of directional projections $\mathbf{n}^{\top}\mathbf{y}$ as functions of the input $\mathbf{x}$ and the unit direction $\mathbf{n}$. At inference, it aggregates quantiles across many directions and reconstructs the multivariate conditional distribution by minimizing the sliced Wasserstein distance via an efficient alternating scheme with convex subproblems. Unlike classical directional-quantile approaches that typically produce only convex quantile regions and require training separate models for different directions, TQF covers all directions with a single model without imposing convexity restrictions. We evaluate TQF on synthetic and real-world datasets, and release the source code on GitHub.
- Abstract(参考訳): 予測の不確実性の定量化は、安全で信頼性の高い現実世界のAIデプロイメントに不可欠である。
しかし、条件分布の完全な非パラメトリック推定は、多変量目標に対して難しいままである。
多変量対象に対する非パラメトリックかつ不確実性を考慮した木に基づく回帰モデルであるトモグラフィ量子フォレスト(TQF)を提案する。
TQF は入力 $\mathbf{x}$ と単位方向 $\mathbf{n}$ の関数として、方向射影の条件量子化を学習する。
推測では、様々な方向の量子を集約し、凸サブプロブレムを持つ効率的な交互化スキームによってスライスされたワッサーシュタイン距離を最小化することにより、多変量条件分布を再構成する。
通常凸量子領域のみを生成し、異なる方向のモデルを訓練する必要がある古典的な方向量子アプローチとは異なり、TQFは凸性制限を課すことなく、すべての方向を単一のモデルでカバーする。
合成および実世界のデータセット上でTQFを評価し、ソースコードをGitHubでリリースする。
関連論文リスト
- Conditional Distribution Quantization in Machine Learning [83.54039134248231]
条件予測 mathbbE(Y Mid X) はしばしば、マルチモーダル条件分布の複雑さを捉えることに失敗する(Y Mid X)
我々はn点条件量子化(n-point Conditional Quantizations)-勾配降下により学習可能なXの関数写像--近似数学L(Y mid X)-を提案する。
論文 参考訳(メタデータ) (2025-02-11T00:28:24Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
奥行き回帰は、予測分布の平均と共分散を負の対数類似度を用いて共同最適化する。
近年の研究では, 共分散推定に伴う課題により, 準最適収束が生じる可能性が示唆されている。
1)予測共分散は予測平均のランダム性を真に捉えているか?
その結果, TICは共分散を正確に学習するだけでなく, 負の対数類似性の収束性の向上も促進することがわかった。
論文 参考訳(メタデータ) (2023-10-29T09:54:03Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
複数のプロセッサ/ワーカー/クライアントがローカルなデュアルベクトルにアクセス可能なマルチGPU設定において、モノトン変分不等式(VI)問題を考察する。
モノトーンVI問題に対するデファクトアルゴリズムであるExtra-gradientは、通信効率が良くないように設計されている。
そこで本稿では,VI の解法に適した非バイアスで適応的な圧縮手法である量子化一般化外部勾配 (Q-GenX) を提案する。
論文 参考訳(メタデータ) (2023-08-17T21:15:04Z) - Vector Quantile Regression on Manifolds [8.328891187733841]
QR(Quantile regression)は、対象変数の条件量子化の分布自由度推定のための統計ツールである。
最適輸送理論とc-凹関数を活用することにより、高次元変数の条件ベクトル量子関数を有意に定義する。
提案手法の有効性を実証し, 合成および実データ実験による非ユークリッド量子化の意味に関する知見を提供する。
論文 参考訳(メタデータ) (2023-07-03T14:17:12Z) - Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
for Uncertainty Quantification [4.728311759896569]
本稿では,機械学習における不確実性を定量化するために,分布予測の新しい,簡潔かつ効果的な手法を提案する。
これは回帰タスクにおいて$mathbbP(mathbfy|mathbfX=x)$の適応的に柔軟な分布予測を組み込む。
UCIデータセットからの大規模な回帰タスクでは、EMQが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2022-11-26T11:45:32Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
量子回帰(Quantile Regression)は、単一の条件量子を近似する方法を提供する。
QRロス関数の最小化は、非交差量子化を保証しない。
任意の数の量子を予測するための汎用的なディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-30T15:35:21Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。