論文の概要: Endo-SemiS: Towards Robust Semi-Supervised Image Segmentation for Endoscopic Video
- arxiv url: http://arxiv.org/abs/2512.16977v1
- Date: Thu, 18 Dec 2025 18:58:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-22 19:25:54.137731
- Title: Endo-SemiS: Towards Robust Semi-Supervised Image Segmentation for Endoscopic Video
- Title(参考訳): Endo-SemiS : 内視鏡画像のためのロバスト半監督画像分割に向けて
- Authors: Hao Li, Daiwei Lu, Xing Yao, Nicholas Kavoussi, Ipek Oguz,
- Abstract要約: Endo-SemiSは、アノテーションを限定した内視鏡ビデオフレームのための半教師付きセグメンテーションフレームワークである。
尿管鏡による腎臓結石レーザー切開法と大腸内視鏡によるポリープ検診の2つの臨床応用について検討した。
最先端のセグメンテーション手法と比較して、Endo-Semi-Sはラベル付きデータに制限のある両方のデータセットにおいて、かなり優れた結果が得られる。
- 参考スコア(独自算出の注目度): 4.8572473967351515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present Endo-SemiS, a semi-supervised segmentation framework for providing reliable segmentation of endoscopic video frames with limited annotation. EndoSemiS uses 4 strategies to improve performance by effectively utilizing all available data, particularly unlabeled data: (1) Cross-supervision between two individual networks that supervise each other; (2) Uncertainty-guided pseudo-labels from unlabeled data, which are generated by selecting high-confidence regions to improve their quality; (3) Joint pseudolabel supervision, which aggregates reliable pixels from the pseudo-labels of both networks to provide accurate supervision for unlabeled data; and (4) Mutual learning, where both networks learn from each other at the feature and image levels, reducing variance and guiding them toward a consistent solution. Additionally, a separate corrective network that utilizes spatiotemporal information from endoscopy video to improve segmentation performance. Endo-SemiS is evaluated on two clinical applications: kidney stone laser lithotomy from ureteroscopy and polyp screening from colonoscopy. Compared to state-of-the-art segmentation methods, Endo-SemiS substantially achieves superior results on both datasets with limited labeled data. The code is publicly available at https://github.com/MedICL-VU/Endo-SemiS
- Abstract(参考訳): 本稿では,アノテーションを限定した内視鏡ビデオフレームの信頼性セグメンテーションを実現するための半教師付きセグメンテーションフレームワークであるEndo-SemiSを提案する。
提案手法は,(1)相互に監督する2つのネットワーク間の相互比較,(2)信頼度の高い領域を選択して品質を向上するラベル付きデータからの不確かさ誘導,(3)両ネットワークの疑似ラベルから信頼性の高いピクセルを集約してラベル付きデータの正確な監視を行う共同擬似ラベル監視,(4)両ネットワークが特徴と画像レベルで相互に学習し,ばらつきを低減し,一貫したソリューションへと導く相互学習である。
さらに、内視鏡映像からの時空間情報を利用してセグメント化性能を向上させる。
Endo-SemiSは尿管鏡による腎臓結石レーザー切開と大腸内視鏡によるポリプスクリーニングの2つの臨床応用で評価されている。
最先端のセグメンテーション手法と比較して、Endo-SemiSはラベル付きデータに制限のある両方のデータセットにおいて、かなり優れた結果が得られる。
コードはhttps://github.com/MedICL-VU/Endo-SemiSで公開されている。
関連論文リスト
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
本稿では, Pseudo-Labels Guided Data Augmentation を用いた新しい半教師付き学習手法である Dual-Decoder Consistency を提案する。
我々は、同じエンコーダを維持しながら、生徒と教師のネットワークに異なるデコーダを使用します。
ラベルのないデータから学習するために、教師ネットワークによって生成された擬似ラベルを作成し、擬似ラベルでトレーニングデータを増強する。
論文 参考訳(メタデータ) (2023-08-31T09:13:34Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
本研究では,Latent Diffusion Model (LDM) によって生成された画像を,半教師付き学習のためのラベル付き画像として利用するフレームワークを提案する。
提案手法により,確率分布の知識をセグメント化ネットワークに効果的に伝達することが可能となり,セグメント化精度が向上する。
論文 参考訳(メタデータ) (2023-05-16T14:08:24Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。