論文の概要: LLM-based Few-Shot Early Rumor Detection with Imitation Agent
- arxiv url: http://arxiv.org/abs/2512.18352v1
- Date: Sat, 20 Dec 2025 12:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.301409
- Title: LLM-based Few-Shot Early Rumor Detection with Imitation Agent
- Title(参考訳): イルミネーション剤を用いたLLMによるFew-Shot早期噂検出
- Authors: Fengzhu Zeng, Qian Shao, Ling Cheng, Wei Gao, Shih-Fen Cheng, Jing Ma, Cheng Niu,
- Abstract要約: Early Rumor Detection (EARD) は、複数のソーシャルメディア投稿に基づいてクレームを正確に分類できる最初期のポイントを特定することを目的としている。
大規模言語モデル(LLM)は、数ショットのNLPタスクではうまく機能するが、時系列データには適していない。
本稿では,自律エージェントとLLMに基づく検出モデルを組み合わせた新しいEARDフレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.230257899856046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
- Abstract(参考訳): Early Rumor Detection (EARD) は、複数のソーシャルメディア投稿に基づいてクレームを正確に分類できる最初期のポイントを特定することを目的としている。
これは特にデータスカース設定では難しい。
LLM(Large Language Models)は、数ショットのNLPタスクではうまく機能するが、時系列データには適さないため、トレーニングと推論の両方に計算コストがかかる。
本研究では,自律型エージェントとLLMに基づく検出モデルを組み合わせた新しいEARDフレームワークを提案する。
このアプローチは、軽量エージェントのトレーニングのみを必要とし、LLMがトレーニング不要のままである、という、数発のEARDの最初のソリューションを提供する。
4つの実世界のデータセットに対する大規模な実験は、我々のアプローチがLLM全体のパフォーマンスを向上し、既存のEARDメソッドを精度とイヤーラインで上回っていることを示している。
関連論文リスト
- SCOPE: Language Models as One-Time Teacher for Hierarchical Planning in Text Environments [4.375012768093524]
テキストベースの環境における長期計画は、オープンエンドアクションスペース、あいまいな観察、まばらなフィードバックによる重要な課題を示す。
近年の研究では、大規模言語モデル(LLM)が世界に関する豊富な意味知識をエンコードしていることが示唆されている。
既存のアプローチは、トレーニングや推論中にLLMを問い合わせることに大きく依存することが多く、計算コストが高く、効率的なデプロイが困難である。
LLM生成サブゴールを利用したワンショット階層型プランナーSCOPE(Subgoal-Conditioned Pretraining for Efficient Planning)を導入する。
論文 参考訳(メタデータ) (2025-12-10T18:26:14Z) - DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models [60.713908578319256]
タスク指向の知識で検出器を最適化するために,DDL(Direct Discrepancy Learning)を提案する。
そこで本研究では,最新のMGTD性能を実現する統合検出フレームワークであるTectAnyLLMを紹介する。
MIRAGEは5つのテキストドメインにまたがる10のコーパスから人書きテキストをサンプリングし、17個の最先端のLLMを使用して再生成または修正する。
論文 参考訳(メタデータ) (2025-09-15T10:59:57Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
大規模言語モデル(LLM)は、従来の手法を進化させるために情報検索に広く統合されている。
エージェント検索フレームワークであるEXSEARCHを提案する。
4つの知識集約ベンチマークの実験では、EXSEARCHはベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-26T15:27:55Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - MIA-Tuner: Adapting Large Language Models as Pre-training Text Detector [32.15773300068426]
既存の手法では、様々な高度なMIAスコア関数を設計し、高い検出性能を実現している。
より正確な事前学習データ検出器としてLLM自体を指示する命令ベースのMIA手法であるMIA-Tunerを提案する。
既存の手法とMIA-Tunerによってもたらされるプライバシーリスクを軽減すべく、2つの命令ベースのセーフガードを設計する。
論文 参考訳(メタデータ) (2024-08-16T11:09:56Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
時間的事象予測のための大規模言語モデル(LLM)を総合的に評価する。
テキストによる微調整 LLM は性能を著しく向上させることができる。
しかし、LLMでは人気バイアスやロングテール問題などの問題が続いている。
論文 参考訳(メタデータ) (2024-07-16T11:58:54Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z) - Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making
using Language Guided World Modelling [101.59430768507997]
強化学習 (Reinforcement Learning, RL) エージェントは通常、世界の事前の知識なしに、タブラララザを学習する。
抽象世界モデル (AWM) を仮定するために, 少数ショット大言語モデル (LLM) を提案する。
LLMを用いてAWMを仮定し, エージェント経験に基づくAWMの検証を行うことで, 従来手法よりもサンプル効率を桁違いに向上させることができる。
論文 参考訳(メタデータ) (2023-01-28T02:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。