論文の概要: Finite-sample guarantees for data-driven forward-backward operator methods
- arxiv url: http://arxiv.org/abs/2512.19172v1
- Date: Mon, 22 Dec 2025 09:07:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.684407
- Title: Finite-sample guarantees for data-driven forward-backward operator methods
- Title(参考訳): データ駆動型フォワードバック演算子の有限サンプル保証
- Authors: Filippo Fabiani, Barbara Franci,
- Abstract要約: 2つの作用素の和の零点を求める問題を考える。
アルゴリズム安定性のレンズの下では、真零点とFB出力の間の距離の確率的境界を導出する。
次に、この結果を一般的なFBナッシュ探索アルゴリズムに特化し、スマートグリッドの制御問題に関する理論的境界を検証した。
- 参考スコア(独自算出の注目度): 1.9336815376402718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish finite sample certificates on the quality of solutions produced by data-based forward-backward (FB) operator splitting schemes. As frequently happens in stochastic regimes, we consider the problem of finding a zero of the sum of two operators, where one is either unavailable in closed form or computationally expensive to evaluate, and shall therefore be approximated using a finite number of noisy oracle samples. Under the lens of algorithmic stability, we then derive probabilistic bounds on the distance between a true zero and the FB output without making specific assumptions about the underlying data distribution. We show that under weaker conditions ensuring the convergence of FB schemes, stability bounds grow proportionally to the number of iterations. Conversely, stronger assumptions yield stability guarantees that are independent of the iteration count. We then specialize our results to a popular FB stochastic Nash equilibrium seeking algorithm and validate our theoretical bounds on a control problem for smart grids, where the energy price uncertainty is approximated by means of historical data.
- Abstract(参考訳): 我々は,データベースフォワードバック(FB)演算子分割方式によって生成されるソリューションの品質に関する有限サンプル証明書を確立する。
確率的レジームで頻繁に起こるように、2つの作用素の和の零点を見つけるという問題を考える。
アルゴリズム安定性のレンズの下では、基礎となるデータ分布について特定の仮定をすることなく、真の零点とFB出力の間の距離の確率的境界を導出する。
FBスキームの収束を保証する弱条件下では、安定境界は反復数に比例して増加することを示す。
逆に、強い仮定は、反復数に依存しない安定性を保証する。
そこで我々は,この結果を一般的なFB確率的ナッシュ均衡アルゴリズムに特殊化するとともに,エネルギー価格の不確実性が歴史的データによって近似されるスマートグリッドの制御問題に対する理論的境界を検証した。
関連論文リスト
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COINは、統計的に有効な閾値を校正し、質問毎に1つの生成された回答をフィルタリングする不確実性保護選択フレームワークである。
COINはキャリブレーションセット上で経験的誤差率を推定し、信頼区間法を適用して真誤差率に高い確率上界を確立する。
リスク管理におけるCOINの堅牢性,許容回答を維持するための強いテストタイムパワー,キャリブレーションデータによる予測効率を実証する。
論文 参考訳(メタデータ) (2025-06-25T07:04:49Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - Private Robust Estimation by Stabilizing Convex Relaxations [22.513117502159922]
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
論文 参考訳(メタデータ) (2021-12-07T07:47:37Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
本研究では、腕の観察を再サンプリングした経験的指標のペア比較に基づいて、ジェネリックディリクレサンプリング(DS)アルゴリズムについて検討する。
この戦略の異なる変種は、分布が有界であるときに証明可能な最適後悔保証と、半有界分布に対して軽度量子状態の対数後悔を実現することを示す。
論文 参考訳(メタデータ) (2021-11-18T14:34:21Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
雑音分布の明示的な表現に依存しない新しい計画法を提案する。
まず、連続系を離散状態モデルに抽象化し、状態間の確率的遷移によってノイズを捕捉する。
いわゆる区間マルコフ決定過程(iMDP)の遷移確率区間におけるこれらの境界を捉える。
論文 参考訳(メタデータ) (2021-10-25T06:18:55Z) - Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex
Optimization Approach [9.462535418331615]
サンプル外境界は、見当たらない入力位置で確立できることが知られている。
有限サンプルの不確実性境界の密接な計算は、パラメトリック制約付き線形プログラムを解くのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2021-04-19T19:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。