論文の概要: Real-Time Machine Learning for Embedded Anomaly Detection
- arxiv url: http://arxiv.org/abs/2512.19383v1
- Date: Mon, 22 Dec 2025 13:27:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.771337
- Title: Real-Time Machine Learning for Embedded Anomaly Detection
- Title(参考訳): 組込み異常検出のためのリアルタイム機械学習
- Authors: Abdelmadjid Benmachiche, Khadija Rais, Hamda Slimi,
- Abstract要約: リソース制約のあるモノのインターネット環境と組み込みデバイスの普及は、エッジで発生する異常のリアルタイム検出に圧力をかけています。
本調査では,レイテンシ,メモリ,消費電力に極めて厳しい制約を課したデバイス上の異常検出を目的とした機械学習手法の概要について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spread of a resource-constrained Internet of Things (IoT) environment and embedded devices has put pressure on the real-time detection of anomalies occurring at the edge. This survey presents an overview of machine-learning methods aimed specifically at on-device anomaly detection with extremely strict constraints for latency, memory, and power consumption. Lightweight algorithms such as Isolation Forest, One-Class SVM, recurrent architectures, and statistical techniques are compared here according to the realities of embedded implementation. Our survey brings out significant trade-offs of accuracy and computational efficiency of detection, as well as how hardware constraints end up fundamentally redefining algorithm choice. The survey is completed with a set of practical recommendations on the choice of the algorithm depending on the equipment profiles and new trends in TinyML, which can help close the gap between detection capabilities and embedded reality. The paper serves as a strategic roadmap for engineers deploying anomaly detection in edge environments that are constrained by bandwidth and may be safety-critical.
- Abstract(参考訳): リソース制約のあるIoT(Internet of Things)環境と組み込みデバイスの普及は、エッジで発生する異常のリアルタイム検出に圧力をかけている。
本調査では,レイテンシ,メモリ,消費電力に極めて厳しい制約を課したデバイス上の異常検出を目的とした機械学習手法の概要について述べる。
分離フォレスト、ワンクラスSVM、繰り返しアーキテクチャ、統計技術といった軽量なアルゴリズムを組込み実装の現実性に応じて比較する。
我々の調査では、精度と検出の計算効率の大幅なトレードオフと、ハードウェアの制約がアルゴリズムの選択を根本的に再定義する方法について述べています。
調査は、TinyMLの機器プロファイルと新しいトレンドに依存するアルゴリズムの選択に関する実践的なレコメンデーションで完了し、検出機能と組み込み現実のギャップを埋める助けとなる。
この論文は、帯域幅に制約され、安全性にクリティカルなエッジ環境において、異常検出をデプロイするエンジニアにとって、戦略的ロードマップとして機能する。
関連論文リスト
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO [0.8520624117635328]
本稿では,アクティビティ検出問題への教師付き機械学習モデルの適用について検討する。
本研究では, セルフリー・マス・マルチ入力多重出力(CF-mMIMO)ネットワークにおいて, ユーザアクティビティ検出に特化して設計されたデータ駆動アルゴリズムを提案する。
このアルゴリズムは99%の精度を達成し、実世界のアプリケーションで有効性を確認します。
論文 参考訳(メタデータ) (2024-06-11T11:08:33Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDARベースのローカライゼーションとマッピングは、多くの現代のロボットシステムにおける中核的なコンポーネントの1つである。
本研究では,ロボット動作中の(非)局所性を検出するニューラルネットワークに基づく推定手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:12:00Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - An Efficient One-Class SVM for Anomaly Detection in the Internet of
Things [25.78558553080511]
安全なモノのインターネット(IoT)デバイスは、重要なインフラストラクチャとインターネット全体に重大な脅威をもたらします。
これらのデバイスから異常な行動を検出することは 依然として重要です
ワンクラスサポートベクターマシン(OCSVM)は、ノベルティ検出のための最先端のアプローチの1つです。
論文 参考訳(メタデータ) (2021-04-22T15:59:56Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
我々は、異なる機械学習技術を用いたDDoS異常検出のためのセキュリティ解析技術について検討する。
本稿では,システムへの入力として実際のトラフィックを扱う新しいアプローチを提案する。
提案するフレームワークの性能要因を3つの異なるテストベッドで検討・比較する。
論文 参考訳(メタデータ) (2020-01-21T06:05:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。