論文の概要: Generative AI for Analysts
- arxiv url: http://arxiv.org/abs/2512.19705v1
- Date: Fri, 12 Dec 2025 01:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-29 00:37:57.0819
- Title: Generative AI for Analysts
- Title(参考訳): アナリストのためのジェネレーティブAI
- Authors: Jian Xue, Qian Zhang, Wu Zhu,
- Abstract要約: 私たちは2023年にFactSetのAIプラットフォームを自然な実験として使用しています。
採用によって、より豊かで包括的なレポートが生み出されることに気付きました。
しかし、AI支援レポートがよりバランスのとれたポジティブな情報とネガティブな情報を混合しているため、予測エラーは59%増加する。
- 参考スコア(独自算出の注目度): 14.967148989267622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study how generative artificial intelligence (AI) transforms the work of financial analysts. Using the 2023 launch of FactSet's AI platform as a natural experiment, we find that adoption produces markedly richer and more comprehensive reports -- featuring 40% more distinct information sources, 34% broader topical coverage, and 25% greater use of advanced analytical methods -- while also improving timeliness. However, forecast errors rise by 59% as AI-assisted reports convey a more balanced mix of positive and negative information that is harder to synthesize, particularly for analysts facing heavier cognitive demands. Placebo tests using other data vendors confirm that these effects are unique to FactSet's AI integration. Overall, our findings reveal both the productivity gains and cognitive limits of generative AI in financial information production.
- Abstract(参考訳): 我々は、生成的人工知能(AI)が金融アナリストの仕事をどう変えるかを研究する。
2023年のFactSetのAIプラットフォームを自然な実験として立ち上げたことにより、採用によって、よりリッチで包括的なレポートが生み出されることがわかりました。
しかし、AI支援レポートは、特に重度の認知的要求に直面しているアナリストにとって、よりバランスのとれたポジティブな情報とネガティブな情報の混合を伝達するので、予測エラーは59%上昇する。
他のデータベンダを使用したPlaceboテストでは、これらのエフェクトがFactSetのAI統合に特有のものであることが確認されている。
総じて,財務情報生産における生産的AIの生産性向上と認知的限界が明らかになった。
関連論文リスト
- Explainable AI as a Double-Edged Sword in Dermatology: The Impact on Clinicians versus The Public [46.86429592892395]
説明可能なAI(XAI)は、AI意思決定の洞察を提供することによって、この問題に対処する。
フェアネスに基づく診断AIモデルと異なるXAI説明を組み合わせた2つの大規模実験の結果を報告する。
論文 参考訳(メタデータ) (2025-12-14T00:06:06Z) - Toward Quantitative Modeling of Cybersecurity Risks Due to AI Misuse [50.87630846876635]
我々は9つの詳細なサイバーリスクモデルを開発する。
各モデルはMITRE ATT&CKフレームワークを使用して攻撃をステップに分解する。
個々の見積もりはモンテカルロシミュレーションによって集約される。
論文 参考訳(メタデータ) (2025-12-09T17:54:17Z) - AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research [81.04845910798387]
脅威検出のための自然言語の説明を生成することは、サイバーセキュリティ研究において未解決の問題である。
本稿では,大規模に独立して動作する自動静的解析要約フレームワークAutoMalDescを紹介する。
アノテーション付きシード(0.9K)データセットや方法論,評価フレームワークなど,100万以上のスクリプトサンプルの完全なデータセットを公開しています。
論文 参考訳(メタデータ) (2025-11-17T13:05:25Z) - When Assurance Undermines Intelligence: The Efficiency Costs of Data Governance in AI-Enabled Labor Markets [5.3700224653806865]
データ使用制限はGenAI効率を著しく低下させ、マッチング率の低下、従業員の転職率の向上、労働市場の摩擦の増大につながった。
我々の発見は、意図しないデータガバナンスの効率コストを明らかにし、情報保証が信頼に不可欠であるにもかかわらず、AIシステム設計とミスマッチした場合、インテリジェンス駆動の効率を損なう可能性があることを強調した。
論文 参考訳(メタデータ) (2025-11-02T05:35:37Z) - AI, Humans, and Data Science: Optimizing Roles Across Workflows and the Workforce [0.0]
我々は、分析、生成、エージェントAIの可能性と限界を考慮し、データサイエンティストを増強したり、伝統的に人間のアナリストや研究者によってなされたタスクを引き受ける。
従来の調査分析が問題になったのは、統計ソフトウェアの使用が簡単になったことで、研究者が完全に理解できなかった分析を行えなくなった時だった。
論文 参考訳(メタデータ) (2025-07-15T17:59:06Z) - Learning to Generate and Evaluate Fact-checking Explanations with Transformers [10.970249299147866]
XAI(Explainable Artificial Antelligence)の研究
我々は,人間のアクセス可能な説明を生成することによって,意思決定を文脈化し,正当化するトランスフォーマーベースの事実チェックモデルを開発した。
我々は人工知能(AI)による説明と人間の判断を一致させる必要性を強調した。
論文 参考訳(メタデータ) (2024-10-21T06:22:51Z) - Detecting AI Generated Text Based on NLP and Machine Learning Approaches [0.0]
自然言語処理の最近の進歩により、AIモデルは将来、人間が書いた書式と同一の書体を生成することができる。
これには深い倫理的、法的、社会的反感があるかもしれない。
本手法は,電子テキストと人文テキストを区別する機械学習手法を含む。
論文 参考訳(メタデータ) (2024-04-15T16:37:44Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - A Meta-Analysis on the Utility of Explainable Artificial Intelligence in
Human-AI Decision-Making [0.0]
本稿では,統計的メタ分析を用いたXAI研究の初期合成について述べる。
我々は,XAIがユーザのパフォーマンスに与える影響を統計的に肯定的に観察する。
単独のAI予測と比較して、説明がユーザのパフォーマンスに与える影響は見つからない。
論文 参考訳(メタデータ) (2022-05-10T19:08:10Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。