論文の概要: A Meta-Analysis on the Utility of Explainable Artificial Intelligence in
Human-AI Decision-Making
- arxiv url: http://arxiv.org/abs/2205.05126v1
- Date: Tue, 10 May 2022 19:08:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:02:26.873076
- Title: A Meta-Analysis on the Utility of Explainable Artificial Intelligence in
Human-AI Decision-Making
- Title(参考訳): 人間のAI意思決定における説明可能な人工知能の有用性に関するメタ分析
- Authors: Max Schemmer and Patrick Hemmer and Maximilian Nitsche and Niklas
K\"uhl and Michael V\"ossing
- Abstract要約: 本稿では,統計的メタ分析を用いたXAI研究の初期合成について述べる。
我々は,XAIがユーザのパフォーマンスに与える影響を統計的に肯定的に観察する。
単独のAI予測と比較して、説明がユーザのパフォーマンスに与える影響は見つからない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research in Artificial Intelligence (AI)-assisted decision-making is
experiencing tremendous growth with a constantly rising number of studies
evaluating the effect of AI with and without techniques from the field of
explainable AI (XAI) on human decision-making performance. However, as tasks
and experimental setups vary due to different objectives, some studies report
improved user decision-making performance through XAI, while others report only
negligible effects. Therefore, in this article, we present an initial synthesis
of existing research on XAI studies using a statistical meta-analysis to derive
implications across existing research. We observe a statistically positive
impact of XAI on users' performance. Additionally, first results might indicate
that human-AI decision-making yields better task performance on text data.
However, we find no effect of explanations on users' performance compared to
sole AI predictions. Our initial synthesis gives rise to future research to
investigate the underlying causes as well as contribute to further development
of algorithms that effectively benefit human decision-makers in the form of
explanations.
- Abstract(参考訳): 人工知能(AI)を補助する意思決定の研究は、人間による意思決定のパフォーマンスに対する説明可能なAI(XAI)の分野からのテクニックによるAIの効果を評価する研究が、絶えず増えている。
しかし,タスクや実験的な設定が目的によって異なるため,XAIによるユーザ意思決定性能が向上した報告もある。
そこで本稿では, 統計的メタ分析を用いて既存のXAI研究の初期合成を行い, 既存の研究における意味を導出する。
xaiがユーザのパフォーマンスに与える影響を統計的に観察した。
さらに、最初の結果から、人間-AIによる意思決定がテキストデータ上でのタスクパフォーマンスを向上させることが示唆される。
しかし、単独のAI予測と比較して、説明がユーザーのパフォーマンスに与える影響は見つからない。
我々の最初の合成は、基礎となる原因を研究するための将来の研究をもたらし、説明の形で人間の意思決定者に効果的に利益をもたらすアルゴリズムの開発に寄与する。
関連論文リスト
- How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - Explain To Decide: A Human-Centric Review on the Role of Explainable
Artificial Intelligence in AI-assisted Decision Making [1.0878040851638]
機械学習モデルはエラーを起こしやすく、自律的に使用することはできない。
説明可能な人工知能(XAI)は、エンドユーザーによるモデルの理解を支援する。
本稿では,XAIの人間-AI意思決定への影響に関する最近の実証的研究について報告する。
論文 参考訳(メタデータ) (2023-12-11T22:35:21Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - From DDMs to DNNs: Using process data and models of decision-making to
improve human-AI interactions [1.1510009152620668]
人工知能(AI)の研究は、意思決定が時間とともにどのように現れるかについての洞察に強い焦点をあてることから恩恵を受けるだろう、と私たちは主張する。
まず,ノイズの蓄積による決定を前提とした,高度に確立された計算フレームワークを提案する。
次に、マルチエージェントAIにおける現在のアプローチが、プロセスデータや意思決定のモデルをどの程度取り入れているかについて議論する。
論文 参考訳(メタデータ) (2023-08-29T11:27:22Z) - The Impact of Imperfect XAI on Human-AI Decision-Making [8.305869611846775]
鳥種識別作業において,誤った説明が人間の意思決定行動にどのように影響するかを評価する。
この結果から,AIと人間-AIチームパフォーマンスへの不完全なXAIと,人間の専門知識レベルの影響が明らかになった。
論文 参考訳(メタデータ) (2023-07-25T15:19:36Z) - Impact Of Explainable AI On Cognitive Load: Insights From An Empirical
Study [0.0]
本研究は、新型コロナウイルスのユースケースを用いて、実装に依存しないXAI説明型の認知負荷、タスクパフォーマンス、タスク時間を測定する。
これらの説明型は, エンドユーザの認知負荷, タスクパフォーマンス, タスク時間に強く影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:52:09Z) - Understanding the Role of Human Intuition on Reliance in Human-AI
Decision-Making with Explanations [44.01143305912054]
意思決定者の直感がAI予測と説明の使用に与える影響について検討する。
以上の結果から,AIの予測と説明に関する3種類の直観が明らかになった。
これらの経路を用いて、なぜ機能に基づく説明が参加者の決定結果を改善しなかったのかを説明し、AIへの依存度を高めた。
論文 参考訳(メタデータ) (2023-01-18T01:33:50Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。