論文の概要: AI Security Beyond Core Domains: Resume Screening as a Case Study of Adversarial Vulnerabilities in Specialized LLM Applications
- arxiv url: http://arxiv.org/abs/2512.20164v1
- Date: Tue, 23 Dec 2025 08:42:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-24 19:17:49.804591
- Title: AI Security Beyond Core Domains: Resume Screening as a Case Study of Adversarial Vulnerabilities in Specialized LLM Applications
- Title(参考訳): コアドメインを越えたAIセキュリティ: 特殊化LDMアプリケーションにおける敵の脆弱性のケーススタディとしてのリザームスクリーニング
- Authors: Honglin Mu, Jinghao Liu, Kaiyang Wan, Rui Xing, Xiuying Chen, Timothy Baldwin, Wanxiang Che,
- Abstract要約: 大きな言語モデル(LLM)はテキストの理解と生成に優れており、コードレビューやコンテンツモデレーションといった自動タスクに最適である。
LLMは履歴書やコードなどの入力データに隠された「逆命令」で操作でき、意図したタスクから逸脱する。
本稿では,特定の攻撃タイプに対して80%以上の攻撃成功率を示すとともに,この脆弱性を再開スクリーニングで評価するためのベンチマークを提案する。
- 参考スコア(独自算出の注目度): 71.27518152526686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) excel at text comprehension and generation, making them ideal for automated tasks like code review and content moderation. However, our research identifies a vulnerability: LLMs can be manipulated by "adversarial instructions" hidden in input data, such as resumes or code, causing them to deviate from their intended task. Notably, while defenses may exist for mature domains such as code review, they are often absent in other common applications such as resume screening and peer review. This paper introduces a benchmark to assess this vulnerability in resume screening, revealing attack success rates exceeding 80% for certain attack types. We evaluate two defense mechanisms: prompt-based defenses achieve 10.1% attack reduction with 12.5% false rejection increase, while our proposed FIDS (Foreign Instruction Detection through Separation) using LoRA adaptation achieves 15.4% attack reduction with 10.4% false rejection increase. The combined approach provides 26.3% attack reduction, demonstrating that training-time defenses outperform inference-time mitigations in both security and utility preservation.
- Abstract(参考訳): 大きな言語モデル(LLM)はテキストの理解と生成に優れており、コードレビューやコンテンツモデレーションといった自動タスクに最適である。
LLMは履歴書やコードなどの入力データに隠された"逆命令"で操作でき、意図したタスクから逸脱する。
特に、コードレビューのような成熟したドメインに対する防御は存在するが、履歴検査やピアレビューのような他の一般的なアプリケーションでは欠落することが多い。
本稿では,特定の攻撃タイプに対して80%以上の攻撃成功率を示すとともに,この脆弱性を再開スクリーニングで評価するためのベンチマークを提案する。
また,ロラ適応を用いたFIDS(Foreign Instruction Detection through separation)では,10.4%の攻撃抑制と10.4%の偽拒絶を達成している。
統合されたアプローチは26.3%のアタック削減をもたらし、セキュリティとユーティリティ保存の両方において、トレーニングタイムの防御が推論タイムの軽減よりも優れていることを示す。
関連論文リスト
- The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections [74.60337113759313]
現在のジェイルブレイクとプロンプトインジェクションに対する防御は、通常、有害な攻撃文字列の静的セットに対して評価される。
我々は,この評価プロセスに欠陥があることを論じる。代わりに,攻撃戦略を明示的に修正したアダプティブアタッカーに対する防御を,防衛設計に対抗して評価すべきである。
論文 参考訳(メタデータ) (2025-10-10T05:51:04Z) - Mind the Gap: Time-of-Check to Time-of-Use Vulnerabilities in LLM-Enabled Agents [4.303444472156151]
大規模言語モデル(LLM)対応エージェントは、広範囲のアプリケーションで急速に出現している。
本研究は,LSM対応エージェントにおけるTOCTOU(time-of-use)脆弱性に関する最初の研究である。
我々は,このタイプの脆弱性を評価するために設計された,66の現実的なユーザタスクを備えたベンチマークTOCTOU-Benchを紹介する。
論文 参考訳(メタデータ) (2025-08-23T22:41:49Z) - Benchmarking Misuse Mitigation Against Covert Adversaries [80.74502950627736]
既存の言語モデルの安全性評価は、オーバースト攻撃と低レベルのタスクに重点を置いている。
我々は、隠蔽攻撃と対応する防御の評価を自動化するデータ生成パイプラインである、ステートフルディフェンスのためのベンチマーク(BSD)を開発した。
評価の結果,分解攻撃は有効な誤用防止剤であり,その対策としてステートフルディフェンスを強調した。
論文 参考訳(メタデータ) (2025-06-06T17:33:33Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - Adaptive Attacks Break Defenses Against Indirect Prompt Injection Attacks on LLM Agents [3.5248694676821484]
我々は8つの異なる防御効果を評価し、それら全てを適応攻撃を用いてバイパスし、連続して50%以上の攻撃成功率を達成する。
本研究は,ロバスト性と信頼性を確保するために,防御設計における適応攻撃評価の必要性を明らかにするものである。
論文 参考訳(メタデータ) (2025-02-27T04:04:50Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
Vision Large Language Models(VLLMs)のジェイルブレイク攻撃に対する脆弱性は、驚くにあたらない。
これらの攻撃に対する最近の防御機構は、ベンチマーク評価においてほぼ飽和状態に達している。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - Fine-tuned Large Language Models (LLMs): Improved Prompt Injection Attacks Detection [6.269725911814401]
大きな言語モデル(LLM)は、幅広い言語ベースのタスクに対処する能力が大きく進歩しているため、人気ツールになりつつある。
しかし、LSMのアプリケーションはインジェクション攻撃に対して非常に脆弱であり、致命的な問題を引き起こす。
このプロジェクトでは,インジェクションのインジェクション攻撃に関連するセキュリティ脆弱性について検討する。
論文 参考訳(メタデータ) (2024-10-28T00:36:21Z) - Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents [32.62654499260479]
我々は,LSMベースのエージェントの攻撃と防御を形式化し,ベンチマークし,評価するフレームワークであるAgen Security Bench (ASB)を紹介した。
ASBをベースとして、インジェクション攻撃10件、メモリ中毒攻撃、新しいPlan-of-Thoughtバックドア攻撃4件、混合攻撃11件をベンチマークした。
ベンチマークの結果,システムプロンプト,ユーザプロンプト処理,ツール使用量,メモリ検索など,エージェント操作のさまざまな段階における重大な脆弱性が明らかになった。
論文 参考訳(メタデータ) (2024-10-03T16:30:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。