論文の概要: Skin Lesion Classification Using a Soft Voting Ensemble of Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2512.20431v1
- Date: Tue, 23 Dec 2025 15:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-24 19:17:49.919578
- Title: Skin Lesion Classification Using a Soft Voting Ensemble of Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークのソフト投票アンサンブルを用いた皮膚病変分類
- Authors: Abdullah Al Shafi, Abdul Muntakim, Pintu Chandra Shill, Rowzatul Zannat, Abdullah Al-Amin,
- Abstract要約: 本稿では,CNNのソフト投票アンサンブルを用いた早期皮膚がん分類法を提案する。
この方法は3つのデータセットに対して96.32%、90.86%、93.92%の病変認識精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer can be identified by dermoscopic examination and ocular inspection, but early detection significantly increases survival chances. Artificial intelligence (AI), using annotated skin images and Convolutional Neural Networks (CNNs), improves diagnostic accuracy. This paper presents an early skin cancer classification method using a soft voting ensemble of CNNs. In this investigation, three benchmark datasets, namely HAM10000, ISIC 2016, and ISIC 2019, were used. The process involved rebalancing, image augmentation, and filtering techniques, followed by a hybrid dual encoder for segmentation via transfer learning. Accurate segmentation focused classification models on clinically significant features, reducing background artifacts and improving accuracy. Classification was performed through an ensemble of MobileNetV2, VGG19, and InceptionV3, balancing accuracy and speed for real-world deployment. The method achieved lesion recognition accuracies of 96.32\%, 90.86\%, and 93.92\% for the three datasets. The system performance was evaluated using established skin lesion detection metrics, yielding impressive results.
- Abstract(参考訳): 皮膚がんは皮膚内視鏡検査や眼科検査で診断できるが,早期発見は生存率を著しく向上させる。
注釈付き皮膚画像と畳み込みニューラルネットワーク(CNN)を用いた人工知能(AI)は、診断精度を向上させる。
本稿では,CNNのソフト投票アンサンブルを用いた早期皮膚がん分類法を提案する。
この調査では、HAM10000、ISIC 2016、ISIC 2019という3つのベンチマークデータセットが使用された。
このプロセスには、再バランス、画像拡張、フィルタリング技術が含まれ、次にトランスファーラーニングによるセグメンテーションのためのハイブリッドデュアルエンコーダが使用された。
正確なセグメンテーションの分類モデルは臨床上重要な特徴に焦点を合わせ、背景のアーティファクトを減らし、精度を向上した。
分類はMobileNetV2、VGG19、InceptionV3のアンサンブルによって行われ、実際の展開の精度と速度のバランスが取れた。
この方法は3つのデータセットに対して96.32\%、90.86\%、93.92\%の病変認識精度を達成した。
確立した皮膚病変検出指標を用いてシステム性能を評価し,優れた結果を得た。
関連論文リスト
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
本研究は, 小児および思春期において最も多い骨癌である骨肉腫(OS)に焦点を当て, 腕と足の長い骨に影響を及ぼす。
我々は、OSの診断精度を向上させるために、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)を組み合わせた新しいハイブリッドモデルを提案する。
このモデルは精度99.08%、精度99.10%、リコール99.28%、F1スコア99.23%を達成した。
論文 参考訳(メタデータ) (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [56.99710477905796]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Reduced Deep Convolutional Activation Features (R-DeCAF) in
Histopathology Images to Improve the Classification Performance for Breast
Cancer Diagnosis [0.0]
乳がんは世界で2番目に多いがんである。
ディープ畳み込みニューラルネットワーク(CNN)は効果的なソリューションである。
事前訓練したCNNの活性化層から抽出した特徴をDeep Convolutional activation features (DeCAF)と呼ぶ。
論文 参考訳(メタデータ) (2023-01-05T06:53:46Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。