論文の概要: Valori: A Deterministic Memory Substrate for AI Systems
- arxiv url: http://arxiv.org/abs/2512.22280v1
- Date: Thu, 25 Dec 2025 06:04:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:29.955897
- Title: Valori: A Deterministic Memory Substrate for AI Systems
- Title(参考訳): Valori: AIシステムのための決定論的メモリ基板
- Authors: Varshith Gudur,
- Abstract要約: Valoriは、浮動小数点メモリ操作を固定点演算に置き換える決定論的AIメモリ基板である。
バロリがメモリ境界における決定性をどのように強制するかを示す。
以上の結果から,決定論的記憶は信頼に値するAIシステムに必要なプリミティブであることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern AI systems rely on vector embeddings stored and searched using floating-point arithmetic. While effective for approximate similarity search, this design introduces fundamental non-determinism: identical models, inputs, and code can produce different memory states and retrieval results across hardware architectures (e.g., x86 vs. ARM). This prevents replayability and safe deployment, leading to silent data divergence that prevents post-hoc verification and compromises audit trails in regulated sectors. We present Valori, a deterministic AI memory substrate that replaces floating-point memory operations with fixed-point arithmetic (Q16.16) and models memory as a replayable state machine. Valori guarantees bit-identical memory states, snapshots, and search results across platforms. We demonstrate that non-determinism arises before indexing or retrieval and show how Valori enforces determinism at the memory boundary. Our results suggest that deterministic memory is a necessary primitive for trustworthy AI systems. The reference implementation is open-source and available at https://github.com/varshith-Git/Valori-Kernel (archived at https://zenodo.org/records/18022660).
- Abstract(参考訳): 現代のAIシステムは浮動小数点演算を用いて保存・検索されるベクトル埋め込みに依存している。
この設計は、近似類似性探索に有効であるが、同じモデル、入力、コードがハードウェアアーキテクチャ(例えば、x86とARM)で異なるメモリ状態と検索結果を生成するという、基本的な非決定性を導入している。
これにより、リプレイ容易性と安全なデプロイメントが防止され、サイレントなデータ分散が発生し、ホック後の検証が防止され、規制されたセクターの監査パスが妥協される。
本稿では、浮動小数点メモリ操作を固定点演算(Q16.16)に置き換え、メモリを再生可能な状態マシンとしてモデル化する決定論的AIメモリ基板であるValoriを提案する。
Valoriは、プラットフォーム間のビット識別メモリ状態、スナップショット、検索結果を保証する。
索引付けや検索の前に非決定論が出現することを示し、バロリがメモリ境界において決定論をどのように強制するかを示す。
以上の結果から,決定論的記憶は信頼に値するAIシステムに必要なプリミティブであることが示唆された。
リファレンス実装はオープンソースで、https://github.com/varshith-Git/Valori-Kernel(https://zenodo.org/records/18022660)で利用可能である。
関連論文リスト
- Wave-Based Semantic Memory with Resonance-Based Retrieval: A Phase-Aware Alternative to Vector Embedding Stores [51.56484100374058]
本稿では,波動パターン$psi(x) = A(x) eiphi(x)$として知識をモデル化し,共振に基づく干渉によってそれを検索する新しいフレームワークを提案する。
このアプローチは振幅情報と位相情報の両方を保存し、より表現的かつ堅牢な意味的類似性を実現する。
論文 参考訳(メタデータ) (2025-08-21T10:13:24Z) - Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
メモリは、大規模言語モデル(LLM)ベースのエージェントを支える、AIシステムの基本コンポーネントである。
本稿ではまず,メモリ表現をパラメトリックおよびコンテキスト形式に分類する。
次に、コンソリデーション、更新、インデックス付け、フォッティング、検索、圧縮の6つの基本的なメモリ操作を紹介します。
論文 参考訳(メタデータ) (2025-05-01T17:31:33Z) - Memory-Efficient Training for Deep Speaker Embedding Learning in Speaker Verification [50.596077598766975]
資源制約のあるシナリオにおける深層話者埋め込み学習のためのメモリ効率のトレーニング戦略について検討する。
アクティベーションのために、中間アクティベーションを格納する必要がない2種類の可逆ニューラルネットワークを設計する。
状態に対して、元の32ビット浮動小数点値を動的ツリーベースの8ビットデータ型に置き換える動的量子化手法を導入する。
論文 参考訳(メタデータ) (2024-12-02T06:57:46Z) - Host-Based Allocators for Device Memory [1.2289361708127877]
割り当てアルゴリズムはホストメモリ上で実行されるが、デバイスメモリを割り当てるので、アロケータはアロケータが割り当てているメモリを読み取ることができない。
これはつまり,ほぼすべてのアロケーションアルゴリズムにおいて,ユビキタスな概念である境界タグを使用できない,ということです。
本稿では,この制約を回避するための代替アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-11T19:28:37Z) - Hierarchical Memory Matching Network for Video Object Segmentation [38.24999776705497]
本稿では,時間的スムーズさを活用しながら,複数スケールのメモリ実行を可能にする2つの高度なメモリ読み取りモジュールを提案する。
まず,非局所的な高密度メモリ読み出しを代替するガイド付きメモリマッチングモジュールを提案する。
階層型メモリマッチング方式を導入し、大小のメモリを粗大のメモリで読み取るトップkガイド型メモリマッチングモジュールを提案する。
論文 参考訳(メタデータ) (2021-09-23T14:36:43Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
エピソディックメモリとセマンティックメモリは、人間のメモリモデルの重要なコンポーネントです。
我々は、エピソードメモリとセマンティックメモリのギャップを埋める新しい原理ベイズメモリ割り当てスキームを開発しました。
この割り当て方式がメモリ条件画像生成の性能を向上させることを実証する。
論文 参考訳(メタデータ) (2021-02-20T18:40:40Z) - ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and
Gradient Accumulation [106.04777600352743]
微分可能なアーキテクチャサーチ(DARTS)は、スーパーネット全体がメモリに格納されているため、メモリコストが大幅に低下する。
シングルパスのDARTSが登場し、各ステップでシングルパスのサブモデルのみを選択する。
メモリフレンドリーだが、計算コストも低い。
RObustifying Memory-Efficient NAS (ROME) と呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-23T06:34:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。