論文の概要: iOSPointMapper: RealTime Pedestrian and Accessibility Mapping with Mobile AI
- arxiv url: http://arxiv.org/abs/2512.22392v1
- Date: Fri, 26 Dec 2025 21:44:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.026562
- Title: iOSPointMapper: RealTime Pedestrian and Accessibility Mapping with Mobile AI
- Title(参考訳): iOSPointMapper: モバイルAIによるリアルタイム歩行者とアクセシビリティマッピング
- Authors: Himanshu Naidu, Yuxiang Zhang, Sachin Mehta, Anat Caspi,
- Abstract要約: iOSPointMapperは,リアルタイムでプライバシを重視した歩道マッピングを地上で実現するモバイルアプリだ。
このシステムは、デバイス上のセマンティックセグメンテーション、LiDARに基づく深さ推定、融合GPS/IMUデータを活用して、歩道関連機能を検出し、ローカライズする。
- 参考スコア(独自算出の注目度): 12.50950229372426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate, up-to-date sidewalk data is essential for building accessible and inclusive pedestrian infrastructure, yet current approaches to data collection are often costly, fragmented, and difficult to scale. We introduce iOSPointMapper, a mobile application that enables real-time, privacy-conscious sidewalk mapping on the ground, using recent-generation iPhones and iPads. The system leverages on-device semantic segmentation, LiDAR-based depth estimation, and fused GPS/IMU data to detect and localize sidewalk-relevant features such as traffic signs, traffic lights and poles. To ensure transparency and improve data quality, iOSPointMapper incorporates a user-guided annotation interface for validating system outputs before submission. Collected data is anonymized and transmitted to the Transportation Data Exchange Initiative (TDEI), where it integrates seamlessly with broader multimodal transportation datasets. Detailed evaluations of the system's feature detection and spatial mapping performance reveal the application's potential for enhanced pedestrian mapping. Together, these capabilities offer a scalable and user-centered approach to closing critical data gaps in pedestrian
- Abstract(参考訳): 正確な最新の歩道データは、アクセスしやすく包括的な歩行者インフラを構築するのに不可欠であるが、データ収集への現在のアプローチは、しばしば費用がかかり、断片化され、拡張が困難である。
我々はiOSPointMapperを紹介した。これは、最新のiPhoneやiPadを使って、リアルタイムでプライバシーに配慮した歩道マッピングを可能にするモバイルアプリケーションだ。
このシステムは、デバイス上のセマンティックセグメンテーション、LiDARに基づく深さ推定、および融合GPS/IMUデータを利用して、交通標識、信号機、ポールなどの歩道関連機能を検出し、ローカライズする。
透明性を確保し、データ品質を改善するため、iOSPointMapperは、提出前にシステム出力を検証するためのユーザガイド付きアノテーションインターフェースを組み込んでいる。
収集されたデータは匿名化され、Transport Data Exchange Initiative(TDEI)に送信される。
システムの特徴検出と空間マッピング性能の詳細な評価は、歩行者マッピングを強化する可能性を明らかにしている。
これらの機能は、歩行者の重要データギャップを埋めるためのスケーラブルでユーザ中心のアプローチを提供する
関連論文リスト
- Advancing Real-World Parking Slot Detection with Large-Scale Dataset and Semi-Supervised Baseline [65.25540269603553]
本研究では,駐車環境を包括的に観察するサラウンドビューカメラを用いた駐車スロット検出に焦点を当てた。
まず,大規模駐車スロット検出データセット(CRPS-D)を構築した。
SS-PSDと呼ばれる駐車スロット検出のための半教師付きベースラインを開発し、ラベルのないデータを活用することにより、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2025-09-16T14:50:19Z) - Real-Time Metric-Semantic Mapping for Autonomous Navigation in Outdoor Environments [18.7565126823704]
大規模屋外環境のグローバルなメトリセマンティックメッシュマップを生成するオンラインメトリセマンティックマッピングシステムを提案する。
シナリオスケールに関わらず,フレーム処理は7ms未満で,マッピング処理は例外的な速度を実現する。
実世界のナビゲーションシステムにマップを組み込むことにより,大学構内における測地情報に基づく地形評価と自律的なポイント・ツー・ポイントナビゲーションを実現する。
論文 参考訳(メタデータ) (2024-11-30T00:05:10Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
効率的な交通信号検出は、自動運転車における知覚スタックの重要な構成要素である。
本研究は,先行研究の課題に対処しつつ,新たなディープラーニング検出システムを導入する。
本稿では,道路上の矢印マークを革新的に利用し,事前地図作成の必要性を解消する関連性推定システムを提案する。
論文 参考訳(メタデータ) (2024-09-11T14:12:44Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - ViFi-Loc: Multi-modal Pedestrian Localization using GAN with
Camera-Phone Correspondences [7.953401800573514]
本稿では,歩行者のより正確な位置推定を行うために,ジェネレーティブ・アドバイサル・ネットワークアーキテクチャを提案する。
訓練中は、歩行者のカメラと電話のデータ通信のリンクを学習する。
GANは5つの屋外シーンにまたがって1~2mの局所化誤差で3次元座標を生成する。
論文 参考訳(メタデータ) (2022-11-22T05:27:38Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
本稿では,データアソシエーションにおけるあいまいさを解消するための完全なパイプラインを提案する。
その中核は、測定のエントロピーに応じて探索領域に適応する堅牢な自己調整データアソシエーションである。
ドイツ・カールスルーエ市周辺の都市・農村のシナリオを実データとして評価した。
論文 参考訳(メタデータ) (2022-07-28T12:29:39Z) - Exploring Map-based Features for Efficient Attention-based Vehicle
Motion Prediction [3.222802562733787]
複数のエージェントの動作予測は、任意に複雑な環境において重要なタスクである。
本稿では,効率的な注意モデルを用いてArgoverse 1.0ベンチマークで競合性能を実現する方法を示す。
論文 参考訳(メタデータ) (2022-05-25T22:38:11Z) - LiveMap: Real-Time Dynamic Map in Automotive Edge Computing [14.195521569220448]
LiveMapは、接続された車両のデータをサブ秒でクラウドソーシングし、道路上のオブジェクトを検出し、一致させ、追跡するリアルタイムダイナミックマップです。
車両の計算を適応的にオフロードできるlivemapの制御プレーンを開発した。
小型テストベッド上でLiveMapを実装し,大規模ネットワークシミュレータを開発した。
論文 参考訳(メタデータ) (2020-12-16T15:00:49Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
モバイルデータ分析における多くの関心は、人間とその行動に関連している。
本研究の目的は,携帯電話データから知識を発見するために実装された手法や手法をレビューすることである。
論文 参考訳(メタデータ) (2020-08-29T15:14:03Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。