論文の概要: A Context-Aware Temporal Modeling through Unified Multi-Scale Temporal Encoding and Hierarchical Sequence Learning for Single-Channel EEG Sleep Staging
- arxiv url: http://arxiv.org/abs/2512.22976v1
- Date: Sun, 28 Dec 2025 15:42:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.308096
- Title: A Context-Aware Temporal Modeling through Unified Multi-Scale Temporal Encoding and Hierarchical Sequence Learning for Single-Channel EEG Sleep Staging
- Title(参考訳): 統合型マルチスケールテンポラルエンコーディングと階層型シークエンス学習による単一チャンネル脳波睡眠ステージングのための文脈認識型テンポラルモデリング
- Authors: Amirali Vakili, Salar Jahanshiri, Armin Salimi-Badr,
- Abstract要約: 本研究は、自動睡眠ステージングのための実用的で広く利用可能な信号である、単一チャネル脳波(EEG)に焦点を当てる。
既存のアプローチでは、クラス不均衡、限定された受容場モデリング、不十分な解釈可能性といった課題に直面している。
本研究は,単一チャネル脳波睡眠ステージングのためのコンテキスト認識・解釈可能なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic sleep staging is a critical task in healthcare due to the global prevalence of sleep disorders. This study focuses on single-channel electroencephalography (EEG), a practical and widely available signal for automatic sleep staging. Existing approaches face challenges such as class imbalance, limited receptive-field modeling, and insufficient interpretability. This work proposes a context-aware and interpretable framework for single-channel EEG sleep staging, with particular emphasis on improving detection of the N1 stage. Many prior models operate as black boxes with stacked layers, lacking clearly defined and interpretable feature extraction roles.The proposed model combines compact multi-scale feature extraction with temporal modeling to capture both local and long-range dependencies. To address data imbalance, especially in the N1 stage, classweighted loss functions and data augmentation are applied. EEG signals are segmented into sub-epoch chunks, and final predictions are obtained by averaging softmax probabilities across chunks, enhancing contextual representation and robustness.The proposed framework achieves an overall accuracy of 89.72% and a macro-average F1-score of 85.46%. Notably, it attains an F1- score of 61.7% for the challenging N1 stage, demonstrating a substantial improvement over previous methods on the SleepEDF datasets. These results indicate that the proposed approach effectively improves sleep staging performance while maintaining interpretability and suitability for real-world clinical applications.
- Abstract(参考訳): 自動睡眠ステージングは、世界的な睡眠障害の流行により、医療において重要な課題である。
本研究は、自動睡眠ステージングのための実用的で広く利用可能な信号である、単一チャネル脳波(EEG)に焦点を当てる。
既存のアプローチでは、クラス不均衡、限定された受容場モデリング、不十分な解釈可能性といった課題に直面している。
本研究は、単一チャネル脳波睡眠ステージのための文脈認識・解釈可能なフレームワークを提案し、特にN1ステージの検出改善に重点を置いている。
提案モデルでは,コンパクトなマルチスケール特徴抽出と時間モデルを組み合わせることで,局所的および長距離的依存関係を抽出する。
特にN1段階でのデータ不均衡に対処するために、クラス重み付き損失関数とデータ拡張を適用する。
脳波信号をサブエポックチャンクに分割し、チャンク全体のソフトマックス確率を平均化し、文脈表現とロバスト性を高めて最終的な予測を行い、提案フレームワークは全体の精度89.72%、マクロ平均F1スコア85.46%を達成する。
特に、挑戦的なN1ステージのF1スコアは61.7%に達し、SleepEDFデータセットの以前の手法よりも大幅に改善されている。
これらの結果から,本手法は実際の臨床応用において,解釈可能性と適合性を保ちながら,睡眠時のステージング性能を効果的に向上させることが示唆された。
関連論文リスト
- Hierarchical Self-Supervised Representation Learning for Depression Detection from Speech [51.14752758616364]
音声による抑うつ検出 (SDD) は、従来の臨床評価に代わる有望で非侵襲的な代替手段である。
HAREN-CTCは,マルチタスク学習フレームワーク内でのクロスアテンションを用いて,多層SSL機能を統合した新しいアーキテクチャである。
このモデルはDAIC-WOZで0.81、MODMAで0.82の最先端マクロF1スコアを達成し、両方の評価シナリオで先行手法より優れている。
論文 参考訳(メタデータ) (2025-10-05T09:32:12Z) - Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
Eucidated Rolling Diffusion Models (ERDM)を紹介する。
ERDMはEucidated Diffusion Models (EDM) の原理的, 性能的設計とローリング予測構造を統一する最初のフレームワークである
2D Navier-StokesシミュレーションとERA5グローバル気象予報の1.5円解像度では、ERDMはキー拡散ベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2025-06-24T21:44:31Z) - PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging [63.05435596565677]
我々は,モンジュマッピングと時間文脈を利用したPSDNormを提案し,信号の深層学習モデルにおける特徴写像の正規化を行う。
PSDNormは、BatchNormよりも4倍のデータ効率が高く、目に見えない左のデータセットで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-03-06T16:20:25Z) - Theoretical Benefit and Limitation of Diffusion Language Model [47.579673047639126]
拡散言語モデルは、テキスト生成の有望なアプローチとして現れてきた。
本稿では,広く使われている拡散言語モデルMasked Diffusion Model(MDM)の厳密な理論的解析について述べる。
我々の分析は、MDMの利点と限界を理解するための最初の理論的基盤を確立している。
論文 参考訳(メタデータ) (2025-02-13T18:59:47Z) - Single Channel EEG Based Insomnia Identification Without Sleep Stage Annotations [0.3495246564946556]
不眠症患者50名,健常者50名を用いて,本モデルの有効性を検証した。
開発されたモデルでは、現在の睡眠監視システムを簡素化し、家庭内振動モニタリングを可能にする可能性がある。
論文 参考訳(メタデータ) (2024-02-09T08:59:37Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability [5.747465732334616]
本研究では,残差ネットワーク内に圧縮ブロックと励起ブロックを統合し,複雑な時間的依存関係を理解するために,特徴抽出と積み重ねBi-LSTMを組み込んだエンド・ツー・エンドディープラーニング(DL)モデルを提案する。
本研究の特筆すべき側面は、睡眠ステージングのためのGradCamの適応であり、この領域における説明可能なDLモデルの最初の事例であり、その決定と睡眠専門家の洞察の一致である。
論文 参考訳(メタデータ) (2023-09-10T17:56:03Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
生の脳波に基づく深層学習モデルSDANを提案する。
チャネルアテンションと空間アテンション機構を連続的に組み合わせて、キー情報をフィルタリングしハイライトする。
他の方法と比較して、N1睡眠期において優れた結果が得られる。
論文 参考訳(メタデータ) (2021-07-18T13:18:12Z) - MRNet: a Multi-scale Residual Network for EEG-based Sleep Staging [5.141687309207561]
マルチスケール機能融合モデルと逐次補正アルゴリズムを統合し,データ駆動型スリープステージングのためのMRNetと呼ばれる新しいフレームワークを提案する。
EEG信号は、深い機能の表現に影響を与えるネットワーク伝播におけるかなりの詳細な情報を失う。
実験結果は,提案手法の精度とf1得点の両方における競合性能を示す。
論文 参考訳(メタデータ) (2021-01-07T13:48:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。