論文の概要: Accelerating Language Model Workflows with Prompt Choreography
- arxiv url: http://arxiv.org/abs/2512.23049v1
- Date: Sun, 28 Dec 2025 19:21:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.34187
- Title: Accelerating Language Model Workflows with Prompt Choreography
- Title(参考訳): Prompt Choreographyによる言語モデルワークフローの高速化
- Authors: TJ Bai, Jason Eisner,
- Abstract要約: 本稿では,動的でグローバルなKVキャッシュを維持することにより,LLMを効率的に実行するためのフレームワークであるPrompt Choreographyを紹介する。
各LSMコールは、以前エンコードされたメッセージの任意の順序で順序付けされたサブセットに対応することができる。
Prompt Choreographyはメッセージ単位のレイテンシを大幅に削減する。
- 参考スコア(独自算出の注目度): 15.03063157222079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models are increasingly deployed in multi-agent workflows. We introduce Prompt Choreography, a framework that efficiently executes LLM workflows by maintaining a dynamic, global KV cache. Each LLM call can attend to an arbitrary, reordered subset of previously encoded messages. Parallel calls are supported. Though caching messages' encodings sometimes gives different results from re-encoding them in a new context, we show in diverse settings that fine-tuning the LLM to work with the cache can help it mimic the original results. Prompt Choreography significantly reduces per-message latency (2.0--6.2$\times$ faster time-to-first-token) and achieves substantial end-to-end speedups ($>$2.2$\times$) in some workflows dominated by redundant computation.
- Abstract(参考訳): 大規模言語モデルは、ますますマルチエージェントワークフローにデプロイされている。
本稿では,動的でグローバルなKVキャッシュを維持することにより,LLMワークフローを効率的に実行するためのフレームワークであるPrompt Choreographyを紹介する。
各LSMコールは、以前エンコードされたメッセージの任意の順序で順序付けされたサブセットに対応することができる。
並列呼び出しがサポートされている。
メッセージのエンコーディングのキャッシュは、新しいコンテキストでそれらを再エンコードすることで異なる結果をもたらすことがあるが、LLMをキャッシュで操作するように微調整することで、元の結果の模倣に役立つ、さまざまな設定で示している。
Prompt Choreography はメッセージ毎のレイテンシ (2.0--6.2$\times$ faster time-to-first-token) を大幅に削減し、冗長な計算が支配するワークフローでは、エンドツーエンドのスピードアップ ($2.2$\times$) を実現する。
関連論文リスト
- SparseVILA: Decoupling Visual Sparsity for Efficient VLM Inference [49.84148668264725]
SparseVILAは効率的なVLM推論のための新しいパラダイムであり、前処理と復号の段階で視覚空間を疎結合する。
AWQ最適化推論パイプライン上に構築されたSparseVILAは、プリフィルの最大4.0倍、デコーディングの2.5倍、長文ビデオタスクの2.6倍のエンドツーエンド高速化を実現している。
論文 参考訳(メタデータ) (2025-10-20T17:35:47Z) - Wide-In, Narrow-Out: Revokable Decoding for Efficient and Effective DLLMs [57.69190972274813]
Diffusion Large Language Models (DLLM) は、自動回帰モデルの魅力的な代替品として登場した。
既存のDLLMは、高速な並列復号化によって性能が著しく低下する、厳しい品質と速度のトレードオフに悩まされている。
本稿では,DLLMの復号化を可能にするトレーニング不要復号アルゴリズムであるWide-In, Narrow-Out (WINO)を紹介する。
論文 参考訳(メタデータ) (2025-07-24T16:51:33Z) - Efficiently Serving Large Multimodal Models Using EPD Disaggregation [24.05805398635414]
Encode-Prefill-Decode Disaggregation(エンコード・プリフィル・デコード・デコード・デアグリゲーション)という,エンコード・プリフィル・デコード・デコード・デアグリゲーション(Encode-Prefill-Decode Disaggregation)というフレームワークを紹介した。
エンコーディングとプリフィルをバンドルする現在のシステムとは異なり、私たちのアプローチはこれらのステップを分離し、新たな機会と最適化を解放します。
一般的なLMMを用いた実験では、メモリ効率(ピークメモリ使用率の最大15倍)、バッチサイズ(最大22倍)、リクエストあたり10倍のイメージ、および2.2倍のKVキャッシュが大幅に向上した。
論文 参考訳(メタデータ) (2024-12-25T10:11:31Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [23.633481089469836]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Optimizing LLM Queries in Relational Data Analytics Workloads [50.95919232839785]
バッチデータ分析は、Large Language Models(LLMs)の急成長するアプリケーションである
LLMは、分類、エンティティ抽出、翻訳などの幅広い自然言語タスクを、大規模なデータセット上で実行可能にする。
本稿では,LLMコールによるリレーショナルデータ解析処理のコストを大幅に削減できる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding [15.723047976314751]
大規模言語モデル(LLM)は、実際にはユビキタスなものとなり、翻訳、要約、命令の追従といった生成タスクに広く利用されている。
本稿では,異なるサイズの言語モデルを組み合わせて,自己回帰復号化の効率を高めるハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T18:59:28Z) - Break the Sequential Dependency of LLM Inference Using Lookahead
Decoding [27.87483106859749]
Lookahead decodingは、大規模言語モデル(LLM)のための正確な並列デコーディングアルゴリズムである。
実装により,MT-benchでは1.8倍,コード補完タスクでは4倍まで高速に自動回帰復号を行うことができる。
論文 参考訳(メタデータ) (2024-02-03T06:37:50Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
論文 参考訳(メタデータ) (2023-04-10T09:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。