論文の概要: It's a TRAP! Task-Redirecting Agent Persuasion Benchmark for Web Agents
- arxiv url: http://arxiv.org/abs/2512.23128v1
- Date: Mon, 29 Dec 2025 01:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.368166
- Title: It's a TRAP! Task-Redirecting Agent Persuasion Benchmark for Web Agents
- Title(参考訳): Webエージェントのためのタスクリダイレクトエージェント説得ベンチマークであるTRAP!
- Authors: Karolina Korgul, Yushi Yang, Arkadiusz Drohomirecki, Piotr Błaszczyk, Will Howard, Lukas Aichberger, Chris Russell, Philip H. S. Torr, Adam Mahdi, Adel Bibi,
- Abstract要約: 大規模な言語モデルを利用したWebベースのエージェントは、メール管理やプロフェッショナルネットワーキングといったタスクにますます利用されている。
動的Webコンテンツへの依存は、インジェクション攻撃の引き金に弱い: インターフェース要素に隠された敵対的命令は、エージェントが元のタスクから逸脱するように説得する。
本稿では,タスクリダイレクトエージェントの説得ベンチマーク(TRAP)について紹介する。
- 参考スコア(独自算出の注目度): 52.81924177620322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Web-based agents powered by large language models are increasingly used for tasks such as email management or professional networking. Their reliance on dynamic web content, however, makes them vulnerable to prompt injection attacks: adversarial instructions hidden in interface elements that persuade the agent to divert from its original task. We introduce the Task-Redirecting Agent Persuasion Benchmark (TRAP), an evaluation for studying how persuasion techniques misguide autonomous web agents on realistic tasks. Across six frontier models, agents are susceptible to prompt injection in 25\% of tasks on average (13\% for GPT-5 to 43\% for DeepSeek-R1), with small interface or contextual changes often doubling success rates and revealing systemic, psychologically driven vulnerabilities in web-based agents. We also provide a modular social-engineering injection framework with controlled experiments on high-fidelity website clones, allowing for further benchmark expansion.
- Abstract(参考訳): 大規模な言語モデルを利用したWebベースのエージェントは、メール管理やプロフェッショナルネットワーキングといったタスクにますます利用されている。
しかし、動的なWebコンテンツへの依存は、インジェクション攻撃を早めるのに脆弱である: インターフェース要素に隠された敵命令は、エージェントが元のタスクから逸脱するように説得する。
本稿では,タスクリダイレクトエージェントの説得ベンチマーク(TRAP)について紹介する。
6つのフロンティアモデル全体で、エージェントは平均25 %のタスク(GPT-5 は 13 % から 43 % は DeepSeek-R1 )をインジェクションし、小さなインターフェースやコンテキストの変化は成功率を2倍にし、Web ベースのエージェントにシステム的で心理的に駆動された脆弱性を明らかにする。
また、高忠実度Webサイトクローン上での制御実験により、さらなるベンチマーク拡張を可能にするモジュール型ソーシャルエンジニアリングインジェクションフレームワークを提供する。
関連論文リスト
- Mind the Web: The Security of Web Use Agents [11.075673765065103]
本稿では,Webページに悪意のあるコンテンツを埋め込むことで,攻撃者がWeb利用エージェントを利用する方法を示す。
本稿では,悪質なコマンドをタスクガイダンスとしてフレーム化するタスクアラインインジェクション手法を提案する。
本稿では,監視機構,実行制約,タスク認識推論技術などを含む包括的緩和戦略を提案する。
論文 参考訳(メタデータ) (2025-06-08T13:59:55Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks [36.97842000562324]
我々は、Pmptインジェクション攻撃に対するWeb Agent Securityのエンドツーエンド評価のための新しいベンチマークであるWASPを紹介する。
高度な推論能力を含むトップレベルのAIモデルでさえ、単純で低便なヒューマンインジェクションによって騙される可能性があることを示す。
攻撃は最大86%で部分的には成功したが、最先端のエージェントでさえ、攻撃者の目標を完全に満たすのに苦労することが多い。
論文 参考訳(メタデータ) (2025-04-22T17:51:03Z) - AdvAgent: Controllable Blackbox Red-teaming on Web Agents [22.682464365220916]
AdvAgentは、Webエージェントを攻撃するためのブラックボックスのレッドチームフレームワークである。
強化学習に基づくパイプラインを使用して、敵のプロンプトモデルをトレーニングする。
慎重な攻撃設計では、エージェントの弱点を効果的に活用し、ステルス性と制御性を維持する。
論文 参考訳(メタデータ) (2024-10-22T20:18:26Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。