論文の概要: AI Meets Brain: Memory Systems from Cognitive Neuroscience to Autonomous Agents
- arxiv url: http://arxiv.org/abs/2512.23343v1
- Date: Mon, 29 Dec 2025 10:01:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.459988
- Title: AI Meets Brain: Memory Systems from Cognitive Neuroscience to Autonomous Agents
- Title(参考訳): AIが脳と出会う:認知神経科学から自律エージェントへの記憶システム
- Authors: Jiafeng Liang, Hao Li, Chang Li, Jiaqi Zhou, Shixin Jiang, Zekun Wang, Changkai Ji, Zhihao Zhu, Runxuan Liu, Tao Ren, Jinlan Fu, See-Kiong Ng, Xia Liang, Ming Liu, Bing Qin,
- Abstract要約: メモリは過去と未来の重要なネクサスブリッジとして機能する。
自律エージェントに関する最近の研究は、認知神経科学に基づいて効率的な記憶を設計することに集中している。
- 参考スコア(独自算出の注目度): 69.39123054975218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Memory serves as the pivotal nexus bridging past and future, providing both humans and AI systems with invaluable concepts and experience to navigate complex tasks. Recent research on autonomous agents has increasingly focused on designing efficient memory workflows by drawing on cognitive neuroscience. However, constrained by interdisciplinary barriers, existing works struggle to assimilate the essence of human memory mechanisms. To bridge this gap, we systematically synthesizes interdisciplinary knowledge of memory, connecting insights from cognitive neuroscience with LLM-driven agents. Specifically, we first elucidate the definition and function of memory along a progressive trajectory from cognitive neuroscience through LLMs to agents. We then provide a comparative analysis of memory taxonomy, storage mechanisms, and the complete management lifecycle from both biological and artificial perspectives. Subsequently, we review the mainstream benchmarks for evaluating agent memory. Additionally, we explore memory security from dual perspectives of attack and defense. Finally, we envision future research directions, with a focus on multimodal memory systems and skill acquisition.
- Abstract(参考訳): メモリは過去と未来の重要なネクサスブリッジとして機能し、人間とAIシステムの両方に、複雑なタスクをナビゲートするための貴重な概念と経験を提供する。
自律エージェントに関する最近の研究は、認知神経科学に基づいて効率的な記憶ワークフローを設計することに集中している。
しかし、学際的障壁に制約され、既存の研究は人間の記憶機構の本質を同化するのに苦労している。
このギャップを埋めるために、我々は、認知神経科学からの洞察とLLM駆動のエージェントを結びつけることによって、記憶の学際的知識を体系的に合成する。
具体的には,認知神経科学からエージェントに至るまでの進歩的軌跡に沿った記憶の定義と機能を明らかにする。
次に,生物と人工の両方の観点から,記憶の分類,記憶機構,および完全な管理ライフサイクルの比較分析を行った。
その後、エージェントメモリ評価のための主要なベンチマークをレビューする。
さらに、攻撃と防御の両面からメモリセキュリティについて検討する。
最後に,マルチモーダルメモリシステムとスキル獲得に焦点をあて,今後の研究の方向性を考察する。
関連論文リスト
- Memory in the Age of AI Agents [217.9368190980982]
この研究は、現在のエージェントメモリ研究の最新の展望を提供することを目的としている。
我々は,エージェントメモリ,すなわちトークンレベル,パラメトリック,潜時メモリの3つの支配的実現を同定する。
実用的な開発を支援するため、メモリベンチマークとオープンソースフレームワークの包括的な概要をコンパイルする。
論文 参考訳(メタデータ) (2025-12-15T17:22:34Z) - MemGen: Weaving Generative Latent Memory for Self-Evolving Agents [57.1835920227202]
本稿では,エージェントに人間的な認知機能を持たせる動的生成記憶フレームワークであるMemGenを提案する。
MemGenは、エージェントが推論を通して潜在記憶をリコールし、増大させ、記憶と認知の密接なサイクルを生み出すことを可能にする。
論文 参考訳(メタデータ) (2025-09-29T12:33:13Z) - Mind Meets Space: Rethinking Agentic Spatial Intelligence from a Neuroscience-inspired Perspective [53.556348738917166]
エージェントAIの最近の進歩は、自律的なタスク実行と言語に基づく推論が可能なシステムにつながっている。
人間の空間知能は、統合された多感覚知覚、空間記憶、認知マップに根ざし、非構造環境における柔軟でコンテキスト対応の意思決定を可能にする。
論文 参考訳(メタデータ) (2025-09-11T05:23:22Z) - From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
メモリは情報をエンコードし、保存し、検索するプロセスである。
大規模言語モデル(LLM)の時代において、メモリとは、AIシステムが過去のインタラクションからの情報を保持し、リコールし、使用し、将来の応答とインタラクションを改善する能力である。
論文 参考訳(メタデータ) (2025-04-22T15:05:04Z) - Survey on Memory-Augmented Neural Networks: Cognitive Insights to AI
Applications [4.9008611361629955]
メモリ拡張ニューラルネットワーク(MANN)は、ヒューマンライクなメモリプロセスをAIに混ぜる。
本研究は, ホップフィールドネットワーク, ニューラルチューリングマシン, 相関行列記憶, メムフォーマ, ニューラルアテンション記憶などの高度なアーキテクチャについて検討した。
自然言語処理、コンピュータビジョン、マルチモーダルラーニング、検索モデルにまたがるMANNの現実的利用に潜んでいる。
論文 参考訳(メタデータ) (2023-12-11T06:05:09Z) - A Machine with Short-Term, Episodic, and Semantic Memory Systems [9.42475956340287]
明示的な人間の記憶システムの認知科学理論に触発されて、我々は短期的、エピソード的、セマンティックな記憶システムを持つエージェントをモデル化した。
実験により,人間のような記憶システムを持つエージェントは,このメモリ構造を環境に残さずにエージェントよりも優れた性能を発揮できることが示唆された。
論文 参考訳(メタデータ) (2022-12-05T08:34:23Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。