論文の概要: Agentic AI for Autonomous Defense in Software Supply Chain Security: Beyond Provenance to Vulnerability Mitigation
- arxiv url: http://arxiv.org/abs/2512.23480v1
- Date: Mon, 29 Dec 2025 14:06:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.52644
- Title: Agentic AI for Autonomous Defense in Software Supply Chain Security: Beyond Provenance to Vulnerability Mitigation
- Title(参考訳): ソフトウェアサプライチェーンセキュリティにおける自律防衛のためのエージェントAI
- Authors: Toqeer Ali Syed, Mohammad Riyaz Belgaum, Salman Jan, Asadullah Abdullah Khan, Saad Said Alqahtani,
- Abstract要約: 本論文は,自律型ソフトウェアサプライチェーンセキュリティに基づくエージェント人工知能(AI)の例を含む。
大規模言語モデル(LLM)ベースの推論、強化学習(RL)、マルチエージェント調整を組み合わせている。
その結果、エージェントAIは、自己防衛的で積極的なソフトウェアサプライチェーンへの移行を促進することが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The software supply chain attacks are becoming more and more focused on trusted development and delivery procedures, so the conventional post-build integrity mechanisms cannot be used anymore. The available frameworks like SLSA, SBOM and in toto are majorly used to offer provenance and traceability but do not have the capabilities of actively identifying and removing vulnerabilities in software production. The current paper includes an example of agentic artificial intelligence (AI) based on autonomous software supply chain security that combines large language model (LLM)-based reasoning, reinforcement learning (RL), and multi-agent coordination. The suggested system utilizes specialized security agents coordinated with the help of LangChain and LangGraph, communicates with actual CI/CD environments with the Model Context Protocol (MCP), and documents all the observations and actions in a blockchain security ledger to ensure integrity and auditing. Reinforcement learning can be used to achieve adaptive mitigation strategies that consider the balance between security effectiveness and the operational overhead, and LLMs can be used to achieve semantic vulnerability analysis, as well as explainable decisions. This framework is tested based on simulated pipelines, as well as, actual world CI/CD integrations on GitHub Actions and Jenkins, including injection attacks, insecure deserialization, access control violations, and configuration errors. Experimental outcomes indicate better detection accuracy, shorter mitigation latency and reasonable build-time overhead than rule-based, provenance only and RL only baselines. These results show that agentic AI can facilitate the transition to self defending, proactive software supply chains rather than reactive verification ones.
- Abstract(参考訳): ソフトウェアサプライチェーンアタックは、信頼性の高い開発とデリバリ手順にますます焦点を絞っているため、従来のビルド後整合性メカニズムはもはや使用できない。
SLSA、SBOM、intoなどの利用可能なフレームワークは、主に証明とトレーサビリティを提供するために使用されるが、ソフトウェア生産における脆弱性を積極的に識別し、削除する能力は持っていない。
本論文は,大規模言語モデル(LLM)に基づく推論,強化学習(RL),マルチエージェント協調を組み合わせた,自律型ソフトウェアサプライチェーンセキュリティに基づくエージェント人工知能(AI)の例を含む。
提案システムは、LangChainとLangGraphの助けを借りて調整された特殊なセキュリティエージェントを使用して、実際のCI/CD環境とMCP(Model Context Protocol)と通信し、ブロックチェーンセキュリティ台帳内のすべての観察とアクションを文書化し、整合性と監査を保証する。
強化学習は、セキュリティの有効性と運用上のオーバーヘッドのバランスを考慮し、適応的な緩和戦略を達成するために使用することができる。
このフレームワークは、シミュレーションパイプラインと、GitHub ActionsとJenkinsの実際のCI/CDインテグレーションに基づいてテストされている。
実験結果から,検出精度の向上,緩和遅延の短縮,ビルドタイムのオーバヘッドの適正化が,ルールベース,プロファイランスのみ,RLのみのベースラインとして確認できた。
これらの結果は、エージェントAIが、反応性検証よりも、自己防衛的で積極的なソフトウェアサプライチェーンへの移行を促進することを示している。
関連論文リスト
- MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm [0.5495755145898128]
現在のAIシステムは、監査証跡、証明追跡、EU AI Actのような新たな規則で要求される説明可能性に欠ける不透明なデータ構造で運用されている。
動作は一時的なタスクではなく、永続的で検証可能なデータアーティファクトによって駆動される、アーティファクト中心のAIエージェントパラダイムを提案する。
プロダクション対応実装では、超高速ストリーミング(2,720.7MB/s)、最適化されたビデオ処理(1,342MB/s)、エンタープライズレベルのセキュリティが示されている。
論文 参考訳(メタデータ) (2025-11-19T04:10:32Z) - Adaptive Attacks on Trusted Monitors Subvert AI Control Protocols [80.68060125494645]
プロトコルとモニタモデルを知っている信頼できないモデルによるアダプティブアタックについて検討する。
我々は、攻撃者がモデル出力に公知またはゼロショットプロンプトインジェクションを埋め込む単純な適応攻撃ベクトルをインスタンス化する。
論文 参考訳(メタデータ) (2025-10-10T15:12:44Z) - BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks [58.959622170433725]
BlindGuardは、攻撃固有のラベルや悪意のある振る舞いに関する事前の知識を必要とせずに学習する、教師なしの防御方法である。
BlindGuardはマルチエージェントシステムにまたがる多様な攻撃タイプ(即時注入、メモリ中毒、ツール攻撃)を効果的に検出する。
論文 参考訳(メタデータ) (2025-08-11T16:04:47Z) - Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
AIシステムの進化 自律エージェントが協力し、情報を共有し、プロトコルを開発することでタスクを委譲するマルチエージェントアーキテクチャをますます展開する。
そのようなリスクの1つはカスケードリスクである。あるエージェントの侵入はシステムを通してカスケードし、エージェント間の信頼を利用して他人を妥協させる。
ACI攻撃では、あるエージェントに悪意のあるインプットまたはツールエクスプロイトが注入され、そのアウトプットを信頼するエージェント間でカスケードの妥協とダウンストリーム効果が増幅される。
論文 参考訳(メタデータ) (2025-07-23T13:51:28Z) - DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents [52.92354372596197]
大規模言語モデル(LLM)は、強力な推論と計画能力のため、エージェントシステムの中心となってきています。
この相互作用は、外部ソースからの悪意のある入力がエージェントの振る舞いを誤解させる可能性がある、インジェクション攻撃のリスクも引き起こす。
本稿では,信頼に値するエージェントシステムのための動的ルールベースの分離フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T05:01:09Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - CoTGuard: Using Chain-of-Thought Triggering for Copyright Protection in Multi-Agent LLM Systems [55.57181090183713]
我々は、Chain-of-Thought推論内でトリガーベースの検出を活用する著作権保護のための新しいフレームワークであるCoTGuardを紹介する。
具体的には、特定のCoTセグメントをアクティベートし、特定のトリガクエリをエージェントプロンプトに埋め込むことで、未許可コンテンツ再生の中間的推論ステップを監視する。
このアプローチは、協調エージェントシナリオにおける著作権侵害の微細かつ解釈可能な検出を可能にする。
論文 参考訳(メタデータ) (2025-05-26T01:42:37Z) - LlamaFirewall: An open source guardrail system for building secure AI agents [0.5603362829699733]
大規模言語モデル(LLM)は、単純なチャットボットから複雑なタスクを実行できる自律エージェントへと進化してきた。
リスクを軽減するための決定論的解決策が欠如していることを考えると、リアルタイムガードレールモニターが不可欠である。
私たちはオープンソースのセキュリティにフォーカスしたガードレールフレームワークであるLlamaFirewallを紹介します。
論文 参考訳(メタデータ) (2025-05-06T14:34:21Z) - Autonomous Identity-Based Threat Segmentation in Zero Trust Architectures [4.169915659794567]
Zero Trust Architectures (ZTA) は,"信頼せず,すべてを検証する" アプローチを採用することで,ネットワークセキュリティを根本的に再定義する。
本研究は、ZTAにおけるAI駆動型、自律型、アイデンティティベースの脅威セグメンテーションに適用する。
論文 参考訳(メタデータ) (2025-01-10T15:35:02Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。