論文の概要: Model-based Development for Autonomous Driving Software Considering Parallelization
- arxiv url: http://arxiv.org/abs/2512.23575v1
- Date: Mon, 29 Dec 2025 16:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.575978
- Title: Model-based Development for Autonomous Driving Software Considering Parallelization
- Title(参考訳): 並列化を考慮した自律運転ソフトウェアのモデルベース開発
- Authors: Kenshin Obi, Takumi Onozawa, Hiroshi Fujimoto, Takuya Azumi,
- Abstract要約: 本稿では,モデルベース開発(MBD)プロセスを用いた自律走行ソフトウェアの並列化手法を提案する。
提案手法は,複雑な処理の実装を容易にするために,既存のモデルベース並列化器(MBP)法を拡張した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, autonomous vehicles have attracted attention as one of the solutions to various social problems. However, autonomous driving software requires real-time performance as it considers a variety of functions and complex environments. Therefore, this paper proposes a parallelization method for autonomous driving software using the Model-Based Development (MBD) process. The proposed method extends the existing Model-Based Parallelizer (MBP) method to facilitate the implementation of complex processing. As a result, execution time was reduced. The evaluation results demonstrate that the proposed method is suitable for the development of autonomous driving software, particularly in achieving real-time performance.
- Abstract(参考訳): 近年、自動運転車は様々な社会問題に対する解決策の1つとして注目されている。
しかし、自律運転ソフトウェアは様々な機能や複雑な環境を考慮するため、リアルタイムのパフォーマンスを必要とする。
そこで本研究では,モデルベース開発(MBD)プロセスを用いた自律走行ソフトウェアの並列化手法を提案する。
提案手法は,複雑な処理の実装を容易にするために,既存のモデルベース並列化器(MBP)法を拡張した。
その結果、実行時間が短縮された。
評価結果から,提案手法は自動運転ソフトウェアの開発,特にリアルタイムの性能向上に適していることが示された。
関連論文リスト
- AdaDrive: Self-Adaptive Slow-Fast System for Language-Grounded Autonomous Driving [71.55254573283793]
既存のアプローチでは、Large Language Modelsを頻繁に起動し、過剰な計算オーバーヘッドを引き起こすか、固定スケジュールを使用するかのいずれかである。
我々は,LLMが意思決定にいつ,どのように貢献するかを最適に決定する,適応的に協調的なスローファストフレームワークであるAdaDriveを提案する。
AdaDriveは、リアルタイムのパフォーマンスを損なうことなく、意思決定の精度を最大化するフレキシブルでコンテキスト対応のフレームワークを提供する。
論文 参考訳(メタデータ) (2025-11-09T07:05:03Z) - Discrete Diffusion for Reflective Vision-Language-Action Models in Autonomous Driving [55.13109926181247]
離散拡散による安全な軌道生成のためのリフレクション機構を統合した学習ベースのフレームワークであるReflectDriveを紹介する。
我々のアプローチの中心は、勾配のない反復的な自己補正を行う、安全を意識した反射機構である。
本手法は目標条件付き軌道生成から始まり,マルチモーダル運転動作をモデル化する。
論文 参考訳(メタデータ) (2025-09-24T13:35:15Z) - Mini Autonomous Car Driving based on 3D Convolutional Neural Networks [0.6349729476511409]
信頼性があり信頼性の高い自律システムの開発は、高い複雑さ、長い訓練期間、本質的な不確実性のレベルといった課題を引き起こす。
ミニオートマチックカー (MAC) は、小規模の設備における自律制御手法の検証を可能にする実用的なテストベッドとして使用される。
本研究では、シミュレーション環境におけるMAC自律運転のためのRGB-D情報と3次元畳み込みニューラルネットワーク(3次元CNN)に基づく方法論を提案する。
論文 参考訳(メタデータ) (2025-08-29T00:21:34Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVEは、ビジョンランゲージモデルとエンド・ツー・エンド(E2E)モデルを相乗化して自動運転車の計画を強化する革新的なフレームワークである。
提案手法は,VLMとE2Eコンポーネント間の包括的インタラクションを実現するために,共有ビジュアルエンコーダによる機能レベルでの知識共有を重視している。
論文 参考訳(メタデータ) (2025-05-22T15:44:30Z) - ToolACE-R: Model-aware Iterative Training and Adaptive Refinement for Tool Learning [84.69651852838794]
ツール学習により、LLM(Large Language Models)は複雑なユーザタスクを解決するための外部ツールを活用することができる。
本稿では,ツール学習のための反復学習と適応的洗練の両方を含む新しいフレームワークであるToolACE-Rを提案する。
我々は、いくつかのベンチマークデータセットにわたる広範な実験を行い、ToolACE-Rが高度なAPIベースのモデルと比較して、競争力のあるパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2025-04-02T06:38:56Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
本稿では,車載ソフトウェアシステムの開発における,新しいモデルと特徴に基づくアプローチを提案する。
提案されたアプローチの重要なポイントの1つは、近代的な生成AI、特にLarge Language Models(LLM)の導入である。
その結果、パイプラインは広範囲に自動化され、各ステップでフィードバックが生成される。
論文 参考訳(メタデータ) (2024-03-21T15:07:57Z) - NeuroFlow: Development of lightweight and efficient model integration
scheduling strategy for autonomous driving system [0.0]
本稿では,自動車システムの独特な制約と特性を考慮した自律運転システムを提案する。
提案システムは、自律運転における複雑なデータフローを体系的に分析し、ディープラーニングモデルに影響を与える様々な要因を動的に調整する機能を提供する。
論文 参考訳(メタデータ) (2023-12-15T07:51:20Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
運転システムを安全に制御するために、信頼性の高いADAS機能調整を検討することが不可欠である。
本稿では,RAILアルゴリズムを提案する。
提案手法は, LIDARデータを扱う意思決定者を訓練し, 多車線複合高速道路環境における自律走行を制御できる。
論文 参考訳(メタデータ) (2021-12-26T23:42:49Z) - Uncertainty-Aware Model-Based Reinforcement Learning with Application to
Autonomous Driving [2.3303341607459687]
本稿では,新しい不確実性を考慮したモデルに基づく強化学習フレームワークを提案する。
このフレームワークは適応的トランケーションアプローチに基づいて開発され、エージェントと環境モデルの間の仮想相互作用を提供する。
開発したアルゴリズムは、エンド・ツー・エンドの自動運転車制御タスクで実装され、様々な運転シナリオにおける最先端の手法と比較される。
論文 参考訳(メタデータ) (2021-06-23T06:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。