論文の概要: Bridging Structure and Appearance: Topological Features for Robust Self-Supervised Segmentation
- arxiv url: http://arxiv.org/abs/2512.23997v1
- Date: Tue, 30 Dec 2025 05:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.29076
- Title: Bridging Structure and Appearance: Topological Features for Robust Self-Supervised Segmentation
- Title(参考訳): ブリッジ構造と外観:ロバスト・セルフ・スーパービジョン・セグメンテーションのトポロジ的特徴
- Authors: Haotang Li, Zhenyu Qi, Hao Qin, Huanrui Yang, Sen He, Kebin Peng,
- Abstract要約: 自己教師付きセマンティックセグメンテーション法は、外観の曖昧さに直面して失敗することが多い。
これは、影、光沢、局所的なテクスチャといった不安定で外観に基づく特徴に過度に依存しているためである、と我々は主張する。
安定な位相情報を活用することで外観と幾何学を橋渡しする新しいフレームワークである textbfGASeg を提案する。
- 参考スコア(独自算出の注目度): 8.584363058858935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
- Abstract(参考訳): 自己教師付きセマンティックセグメンテーション法は、外観の曖昧さに直面して失敗することが多い。
これは、影、光沢、局所的なテクスチャといった不安定で外観に基づく特徴に過度に依存しているためである、と我々は主張する。
安定なトポロジ情報を利用して外観と幾何学を橋渡しする新しいフレームワークである「textbf{GASeg}」を提案する。
本手法のコアとなるのは微分可能なBox-Counting (\textbf{DBC}) モジュールであり、これは幾何学的特徴と外見的特徴の2つの並列ストリームから多スケールの位相統計を定量化する。
モデルにこれらの安定な構造表現を強制的に学習させるため、入力画像に形態的演算子を適用することで現実世界の曖昧さをシミュレートする対角戦略であるトポロジカル拡張(\textbf{TopoAug})を導入する。
多目的損失である \textbf{GALoss} は、幾何学的特徴と外見的特徴の相互アライメントを明示的に強制する。
大規模な実験により,COCO-Stuff,Cityscapes,PASCALの4つのベンチマークでGASegが最先端のパフォーマンスを達成し,地形情報によるブリッジング幾何学と外観のアプローチを検証した。
関連論文リスト
- From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures [38.75080027435365]
本稿では,テキスト埋め込みモデルとデータセットの幅広い集合にわたる位相的および幾何学的測度を包括的に分析する。
埋め込み空間を特徴付けるための総合的なフレームワークである統一トポロジカルシグナチャ (UTS) を導入する。
論文 参考訳(メタデータ) (2025-11-27T06:37:45Z) - GeoGNN: Quantifying and Mitigating Semantic Drift in Text-Attributed Graphs [59.61242815508687]
テキスト分散グラフ(TAG)上のグラフニューラルネットワーク(GNN)は、事前訓練された言語モデル(PLM)を使用してノードテキストを符号化し、これらの埋め込みを線形近傍アグリゲーションを通じて伝播する。
本研究は,意味的ドリフトの度合いを計測する局所PCAベースの計量を導入し,異なる凝集機構が多様体構造にどのように影響するかを解析するための最初の定量的枠組みを提供する。
論文 参考訳(メタデータ) (2025-11-12T06:48:43Z) - Point or Line? Using Line-based Representation for Panoptic Symbol Spotting in CAD Drawings [67.5600169375126]
ベクトルグラフィカルプリミティブからなるCAD図面におけるパノプティカルシンボルスポッティングの課題について検討する。
既存の手法は通常、画像化、グラフ構築、あるいは点ベースの表現に依存している。
本稿では,プリミティブの行ベースの表現を通じてこれらの課題に対処する新しい手法であるVecFormerを提案する。
論文 参考訳(メタデータ) (2025-05-29T12:33:11Z) - Mesh Mamba: A Unified State Space Model for Saliency Prediction in Non-Textured and Textured Meshes [50.23625950905638]
メッシュサリエンシは、自然に視覚的注意を引き付ける領域を特定して強調することにより、3D視覚の適応性を高める。
状態空間モデル (SSM) に基づく統合唾液度予測モデルであるメッシュ・マンバを導入する。
Mesh Mambaは、トポロジカルフレームワークにテクスチャ機能をシームレスに組み込んだまま、メッシュの幾何学的構造を効果的に分析する。
論文 参考訳(メタデータ) (2025-04-02T08:22:25Z) - Flexible Mesh Segmentation via Reeb Graph Representation of Geometrical and Topological Features [0.0]
本稿では, フレキシブルリーブグラフ表現を用いて幾何学的特徴と位相的特徴を統合するメッシュセグメンテーション手法を提案する。
このアルゴリズムは,改良されたトポロジカルスケルトンアプローチを用いたリーブグラフの構築,重要な特徴を保ちながら臨界点のキャンセルによるグラフの位相的単純化,適応的な領域成長過程による連続セグメントの生成の3段階からなる。
論文 参考訳(メタデータ) (2024-12-05T23:04:45Z) - Persistent Topological Features in Large Language Models [0.6597195879147556]
トポロジカルな特徴である$p$次元の穴が層全体に持続し、進化していくかを測定するトポロジカル記述子を導入する。
このことは、プロンプトがどのように再配置され、それらの相対的な位置が表現空間で変化するかという統計的視点を与える。
ショーケースアプリケーションとして、レイヤプルーニングの基準を確立するためにzigzag Persistenceを使用し、最先端の手法に匹敵する結果を得る。
論文 参考訳(メタデータ) (2024-10-14T19:46:23Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Self-supervised Geometric Perception [96.89966337518854]
自己教師付き幾何知覚(self-supervised geometric perception)は、基底幾何モデルラベルなしで対応マッチングのための特徴記述子を学ぶためのフレームワークである。
また,SGPは,地上トラスラベルを用いて訓練した教師付きオークルよりも同等か優れる最先端性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。