論文の概要: Developing controlled natural language for formal specification patterns using AI assistants
- arxiv url: http://arxiv.org/abs/2512.24159v1
- Date: Tue, 30 Dec 2025 11:43:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.370539
- Title: Developing controlled natural language for formal specification patterns using AI assistants
- Title(参考訳): AIアシスタントを用いた形式仕様パターン制御自然言語の開発
- Authors: Natalia Garanina, Vladimir Zyubin, Igor Anureev,
- Abstract要約: 本研究では,論理属性を含む形式的仕様パターンに基づいて,要求に対して制御された自然言語を構築する手法を開発した。
この方法は、イベント駆動の時間的要求に対してテストされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using an AI assistant, we developed a method for systematically constructing controlled natural language for requirements based on formal specification patterns containing logical attributes. The method involves three stages: 1) compiling a generalized natural language requirement pattern that utilizes all attributes of the formal specification template; 2) generating, using the AI assistant, a corpus of natural language requirement patterns, reduced by partially evaluating attributes (the developed prompt utilizes the generalized template, attribute definitions, and specific formal semantics of the requirement patterns); and 3) formalizing the syntax of the controlled natural language based on an analysis of the grammatical structure of the resulting patterns. The method has been tested for event-driven temporal requirements.
- Abstract(参考訳): そこで我々は,AIアシスタントを用いて,論理属性を含む形式的仕様パターンに基づいて,要求に対して制御された自然言語を体系的に構築する手法を開発した。
方法には3つの段階がある。
1) 形式仕様テンプレートのすべての属性を利用する汎用自然言語要求パターンをコンパイルすること。
2) 自然言語要求パターンのコーパスであるAIアシスタントを使用して,属性を部分的に評価することで削減する(先進的なプロンプトでは,汎用テンプレート,属性定義,要求パターンの特定の形式的意味論などを活用)。
3) 生成したパターンの文法構造の分析に基づいて, 制御された自然言語の構文を定式化する。
この方法は、イベント駆動の時間的要求に対してテストされている。
関連論文リスト
- Semantic Regexes: Auto-Interpreting LLM Features with a Structured Language [29.636642657652455]
本稿では,大言語モデル(LLM)の機能のセマンティクス,構造化言語記述を紹介する。
セマンティクスは自然言語の精度と一致し、より簡潔で一貫した特徴記述が得られる。
論文 参考訳(メタデータ) (2025-10-07T18:56:45Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
我々はNLPの分野における主要な考え方と最先端の方法論について論じる。
我々は2つの異なるアプローチを詳細に議論し、ルールセットの反復的開発を強調した。
提案手法は, 自動車分野と鉄道分野の2つの産業分野において実証された。
論文 参考訳(メタデータ) (2023-09-23T05:45:19Z) - nl2spec: Interactively Translating Unstructured Natural Language to
Temporal Logics with Large Language Models [3.1143846686797314]
大規模言語モデル(LLM)を適用するためのフレームワークであるnl2specは、構造化されていない自然言語から正式な仕様を導出する。
本稿では,自然言語におけるシステム要求のあいまいさを検知し,解決する新たな手法を提案する。
ユーザは、これらのサブ翻訳を反復的に追加、削除、編集して、不正なフォーマル化を修正する。
論文 参考訳(メタデータ) (2023-03-08T20:08:53Z) - Language Models as Inductive Reasoners [125.99461874008703]
本稿では,帰納的推論のための新しいパラダイム(タスク)を提案し,自然言語の事実から自然言語規則を誘導する。
タスクのための1.2kルールファクトペアを含むデータセットDEERを作成し,ルールと事実を自然言語で記述する。
我々は、事前訓練された言語モデルが自然言語の事実から自然言語規則をいかに誘導できるかを、初めてかつ包括的な分析を行う。
論文 参考訳(メタデータ) (2022-12-21T11:12:14Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - Formal Specifications from Natural Language [3.1806743741013657]
本稿では,自然言語を複雑な意味を持つ形式仕様に翻訳する言語モデルについて検討する。
特に、構造化英語文からなる3つのデータセット上で、オフザシェルフ言語モデルを微調整する。
論文 参考訳(メタデータ) (2022-06-04T10:49:30Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - AUTOLEX: An Automatic Framework for Linguistic Exploration [93.89709486642666]
本稿では言語学者による言語現象の簡潔な記述の発見と抽出を容易にするための自動フレームワークを提案する。
具体的には、この枠組みを用いて、形態的一致、ケースマーキング、単語順序の3つの現象について記述を抽出する。
本研究では,言語専門家の助けを借りて記述を評価し,人間の評価が不可能な場合に自動評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T20:37:30Z) - Natural Language Generation Using Link Grammar for General
Conversational Intelligence [0.0]
Link Grammarデータベースを用いて,文法的に有効な文を自動的に生成する手法を提案する。
この自然言語生成方法は、最先端のベースラインをはるかに上回り、プロトAGI質問応答パイプラインの最終コンポーネントとして機能する。
論文 参考訳(メタデータ) (2021-04-19T06:16:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。