論文の概要: Projection-based Adversarial Attack using Physics-in-the-Loop Optimization for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2512.24792v1
- Date: Wed, 31 Dec 2025 11:30:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.632128
- Title: Projection-based Adversarial Attack using Physics-in-the-Loop Optimization for Monocular Depth Estimation
- Title(参考訳): 単眼深度推定のための物理対ループ最適化を用いた投射型対向攻撃
- Authors: Takeru Kusakabe, Yudai Hirose, Mashiho Mukaida, Satoshi Ono,
- Abstract要約: ディープニューラルネットワーク(DNN)は、入力画像に特定の摂動を追加すると誤分類を引き起こす敵の攻撃に対して脆弱である。
本研究では,対象物体に摂動光を投射する投射型対向攻撃法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) remain vulnerable to adversarial attacks that cause misclassification when specific perturbations are added to input images. This vulnerability also threatens the reliability of DNN-based monocular depth estimation (MDE) models, making robustness enhancement a critical need in practical applications. To validate the vulnerability of DNN-based MDE models, this study proposes a projection-based adversarial attack method that projects perturbation light onto a target object. The proposed method employs physics-in-the-loop (PITL) optimization -- evaluating candidate solutions in actual environments to account for device specifications and disturbances -- and utilizes a distributed covariance matrix adaptation evolution strategy. Experiments confirmed that the proposed method successfully created adversarial examples that lead to depth misestimations, resulting in parts of objects disappearing from the target scene.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、入力画像に特定の摂動が加えられると誤分類を引き起こす敵の攻撃に弱いままである。
この脆弱性はまた、DNNベースの単眼深度推定(MDE)モデルの信頼性を脅かし、実用アプリケーションにおいてロバスト性の向上が重要なニーズとなっている。
本研究は、DNNに基づくMDEモデルの脆弱性を検証するために、ターゲットオブジェクトに摂動光を投影するプロジェクションベースの逆攻撃法を提案する。
提案手法では, デバイス仕様と乱れを考慮した実際の環境における候補解の評価と, 分散共分散行列適応進化戦略を用いて, PITL最適化を用いる。
実験により,提案手法が深度推定に繋がる敵の例を作成し,対象シーンから物体の一部が消えることが確認された。
関連論文リスト
- Exploring Semantic-constrained Adversarial Example with Instruction Uncertainty Reduction [51.50282796099369]
本稿では,多次元命令の不確実性低減フレームワークを開発し,意味論的に制約された逆の例を生成する。
言語誘導サンプリングプロセスの予測により、設計したResAdv-DDIMサンプルにより最適化プロセスが安定化される。
セマンティック制約付き3次元逆数例の参照フリー生成を初めて実現した。
論文 参考訳(メタデータ) (2025-10-27T04:02:52Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
本稿では,組み込みディープニューラルネットワーク(DNN)のロバスト性評価について述べる。
本研究は,様々なエンコーダデコーダモデルの層間およびビット間感度をソフトエラーに精査することにより,セグメント化DNNのSEUに対する脆弱性を徹底的に調査する。
本稿では,資源制約によるデプロイメントに適したメモリや計算コストを伴わない,実用的な軽量なエラー軽減手法を提案する。
論文 参考訳(メタデータ) (2024-12-04T18:28:38Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
本研究では,クエリ制限シナリオにおいて,悪意のある逆の例を作成するために,空間変換ブラックボックス攻撃(STBA)を提案する。
そこで本研究では,STBAが対向例の認識不能性を効果的に改善し,クエリ制限条件下での攻撃成功率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-03-30T13:28:53Z) - FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation [9.025997629442896]
FACADEは、ディープニューラルネットワークにおける教師なしの機械的異常検出のために設計されている。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
論文 参考訳(メタデータ) (2023-07-20T04:00:37Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Disentangling Object Motion and Occlusion for Unsupervised Multi-frame
Monocular Depth [37.021579239596164]
既存の動的対象に焦点をあてた手法は、トレーニング損失レベルのミスマッチ問題を部分的に解決しただけである。
本稿では,これらの問題を予測レベルと監督損失レベルの両方で解くために,新しい多フレーム単眼深度予測法を提案する。
我々の手法はDynamicDepthと呼ばれ、自己教師付きサイクル一貫性学習スキームによって訓練された新しいフレームワークである。
論文 参考訳(メタデータ) (2022-03-29T01:36:11Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Black-box Adversarial Attacks on Monocular Depth Estimation Using
Evolutionary Multi-objective Optimization [0.0]
本稿では,単眼深度推定のためのディープニューラルネットワーク(DNN)に対する対角攻撃法,すなわち,画像から深度を推定する手法を提案する。
論文 参考訳(メタデータ) (2020-12-29T14:01:11Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。