論文の概要: FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation
- arxiv url: http://arxiv.org/abs/2307.10563v1
- Date: Thu, 20 Jul 2023 04:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:02:30.382241
- Title: FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation
- Title(参考訳): FACADE: 逆回路異常検出と評価のためのフレームワーク
- Authors: Dhruv Pai, Andres Carranza, Rylan Schaeffer, Arnuv Tandon, Sanmi
Koyejo
- Abstract要約: FACADEは、ディープニューラルネットワークにおける教師なしの機械的異常検出のために設計されている。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
- 参考スコア(独自算出の注目度): 9.025997629442896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present FACADE, a novel probabilistic and geometric framework designed for
unsupervised mechanistic anomaly detection in deep neural networks. Its primary
goal is advancing the understanding and mitigation of adversarial attacks.
FACADE aims to generate probabilistic distributions over circuits, which
provide critical insights to their contribution to changes in the manifold
properties of pseudo-classes, or high-dimensional modes in activation space,
yielding a powerful tool for uncovering and combating adversarial attacks. Our
approach seeks to improve model robustness, enhance scalable model oversight,
and demonstrates promising applications in real-world deployment settings.
- Abstract(参考訳): 本稿では、深層ニューラルネットワークにおける教師なし機械的異常検出のための新しい確率的および幾何学的フレームワークであるFACADEを提案する。
その主な目標は、敵の攻撃の理解と緩和を促進することである。
FACADEは、回路上の確率分布を生成することを目的としており、擬似クラスや活性化空間における高次元モードの多様体特性の変化への寄与に重要な洞察を与え、敵の攻撃を発見・戦える強力なツールを提供する。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
関連論文リスト
- ExAL: An Exploration Enhanced Adversarial Learning Algorithm [0.0]
探索強化適応学習アルゴリズム(ExAL)を提案する。
ExALは探索駆動機構を統合し、モデル決定境界への影響を最大化する摂動を発見する。
MNISTの手書きディジットとBlended Malwareデータセット上でのExALの性能を評価する。
論文 参考訳(メタデータ) (2024-11-24T15:37:29Z) - Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
論文 参考訳(メタデータ) (2024-08-20T02:00:02Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - ADVREPAIR:Provable Repair of Adversarial Attack [15.580097790702508]
ディープニューラルネットワーク(DNN)は、ますます安全クリティカルなドメインにデプロイされているが、敵の攻撃に対する脆弱性は深刻な安全リスクを引き起こす。
制限されたデータを用いた既存のニューロンレベルの手法は、敵の攻撃機構の複雑さにより、敵の修正に有効性が欠如している。
本稿では,限られたデータを用いた敵攻撃の是正可能な修復手法であるADVREPAIRを提案する。
論文 参考訳(メタデータ) (2024-04-02T05:16:59Z) - Problem space structural adversarial attacks for Network Intrusion Detection Systems based on Graph Neural Networks [8.629862888374243]
本稿では,ネットワーク侵入検知におけるGNNに適した敵攻撃の最初の形式化を提案する。
我々は、現実のシナリオにおいて、実行可能な構造攻撃を実行するために、攻撃者が考慮すべき問題空間の制約を概説し、モデル化する。
以上の結果から,古典的特徴に基づく攻撃に対するモデルの堅牢性の向上が示唆された。
論文 参考訳(メタデータ) (2024-03-18T14:40:33Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。