論文の概要: Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
- arxiv url: http://arxiv.org/abs/2601.00138v1
- Date: Wed, 31 Dec 2025 23:27:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.273789
- Title: Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
- Title(参考訳): ビデオ質問応答における信頼度予測のための明示的無視ノブ
- Authors: Jorge Ortiz,
- Abstract要約: 視覚言語モデルの高度展開には選択的な予測が必要である。
ビデオ質問応答において,信頼度に基づく抑止がエラー率を確実に制御するかどうかを検討する。
- 参考スコア(独自算出の注目度): 0.41288208387994896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
- Abstract(参考訳): 視覚言語モデル(VLM)の高度展開には選択的な予測が必要である。
本稿では,映像質問応答における誤り率に対する信頼度に基づく抑止が信頼性の高い制御を提供するか,その制御が分散シフト下で頑健であるかを検討する。
NExT-QA と Gemini 2.0 Flash を用いて2つの知見を得た。
第一に、信頼しきい値設定は、分配における機械的制御を提供する。
スイーピングしきい値エプシロンはスムーズなリスク被覆トレードオフを生成し、エラー率fを減少させる
関連論文リスト
- LEC: Linear Expectation Constraints for False-Discovery Control in Selective Prediction and Routing Systems [95.35293543918762]
大規模言語モデル(LLM)はしばしば信頼できない答えを生成するが、不確実性のある手法は誤った予測と完全に区別することができない。
我々は、この問題を、偽発見率(FDR)制御のレンズを通して解決し、全ての許容された予測のうち、エラーの割合が目標のリスクレベルを超えないことを保証する。
本稿では,線形期待制約を強制することで,選択予測を制約付き決定問題として再解釈するLECを提案する。
論文 参考訳(メタデータ) (2025-12-01T11:27:09Z) - Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection [6.288045889067255]
DINOv2のような基礎モデルは、数発の異常検出において強い性能を示している。
本研究は, 敵攻撃と不確実性評価に関する最初の体系的研究である。
生の異常スコアは校正が不十分で、信頼性と正しさのギャップが明らかになり、安全クリティカルな使用が制限されることがわかりました。
論文 参考訳(メタデータ) (2025-10-15T15:06:45Z) - COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COINは、統計的に有効な閾値を校正し、質問毎に1つの生成された回答をフィルタリングする不確実性保護選択フレームワークである。
COINはキャリブレーションセット上で経験的誤差率を推定し、信頼区間法を適用して真誤差率に高い確率上界を確立する。
リスク管理におけるCOINの堅牢性,許容回答を維持するための強いテストタイムパワー,キャリブレーションデータによる予測効率を実証する。
論文 参考訳(メタデータ) (2025-06-25T07:04:49Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
動的しきい値キャリブレーションとクロスモーダル整合性検証を統合したモデル非依存不確実性定量化法を提案する。
このフレームワークは、様々なキャリブレーションとテストの分割比で安定したパフォーマンスを実現し、医療、自律システム、その他の安全に敏感な領域における現実的な展開の堅牢性を強調している。
この研究は、マルチモーダルAIシステムにおける理論的信頼性と実用性の間のギャップを埋め、幻覚検出と不確実性を考慮した意思決定のためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-04-24T15:39:46Z) - TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
本稿では,共変量および意味的シフトの両条件下での拒絶による分類を統一し,促進する,単純な故障検出フレームワークを提案する。
キーとなる洞察は、障害固有の信頼性知識を低ランクアダプタで分離し、統合することにより、障害検出能力を効果的かつ柔軟に向上できるということです。
論文 参考訳(メタデータ) (2025-04-20T09:20:55Z) - Selective "Selective Prediction": Reducing Unnecessary Abstention in Vision-Language Reasoning [67.82016092549284]
本稿では,選択型視覚言語システムの過剰保持を低減するための推論時アルゴリズムReCoVERRを紹介する。
ReCoVERRは、予測のための追加の証拠を提供する画像の中に、関連する手がかりを見つけようとする。
論文 参考訳(メタデータ) (2024-02-23T21:16:52Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。