論文の概要: Retrieval--Reasoning Processes for Multi-hop Question Answering: A Four-Axis Design Framework and Empirical Trends
- arxiv url: http://arxiv.org/abs/2601.00536v1
- Date: Fri, 02 Jan 2026 02:38:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.50202
- Title: Retrieval--Reasoning Processes for Multi-hop Question Answering: A Four-Axis Design Framework and Empirical Trends
- Title(参考訳): マルチホップ質問回答のための検索・推論プロセス:4軸設計フレームワークと実証的傾向
- Authors: Yuelyu Ji, Zhuochun Li, Rui Meng, Daqing He,
- Abstract要約: 本調査では,実行手順を分析単位として,4軸フレームワークを導入している。
代表的マルチホップQAシステムをマッピングし、標準ベンチマークで報告された改善と傾向を合成する。
我々は、構造対応計画、転送可能な制御ポリシー、分散シフト下での堅牢な停止など、検索エージェントに対するオープンな課題で締めくくります。
- 参考スコア(独自算出の注目度): 16.699029984948073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop question answering (QA) requires systems to iteratively retrieve evidence and reason across multiple hops. While recent RAG and agentic methods report strong results, the underlying retrieval--reasoning \emph{process} is often left implicit, making procedural choices hard to compare across model families. This survey takes the execution procedure as the unit of analysis and introduces a four-axis framework covering (A) overall execution plan, (B) index structure, (C) next-step control (strategies and triggers), and (D) stop/continue criteria. Using this schema, we map representative multi-hop QA systems and synthesize reported ablations and tendencies on standard benchmarks (e.g., HotpotQA, 2WikiMultiHopQA, MuSiQue), highlighting recurring trade-offs among effectiveness, efficiency, and evidence faithfulness. We conclude with open challenges for retrieval--reasoning agents, including structure-aware planning, transferable control policies, and robust stopping under distribution shift.
- Abstract(参考訳): マルチホップ質問応答 (Multi-hop question answering, QA) は、複数のホップにまたがる証拠や理由を反復的に回収するシステムを必要とする。
近年のRAG法とエージェント法では強い結果が報告されているが、基礎となる検索-reasoning \emph{process} はしばしば暗黙的に残されており、手続き的な選択はモデルファミリ間で比較することが困難である。
本稿では,A)全体実行計画,(B)インデックス構造,(C)次ステップ制御(戦略とトリガ),(D)停止/継続基準をカバーする4軸フレームワークを紹介する。
このスキーマを用いて、代表的マルチホップQAシステムをマッピングし、標準ベンチマーク(HotpotQA, 2WikiMultiHopQA, MuSiQue)で報告された改善と傾向を合成し、有効性、効率性、証拠忠実性のトレードオフを強調する。
我々は、構造対応計画、転送可能な制御ポリシー、分散シフト下での頑健な停止など、検索エージェントに対するオープンな課題で締めくくります。
関連論文リスト
- DecoupleSearch: Decouple Planning and Search via Hierarchical Reward Modeling [56.45844907505722]
二重値モデルを用いて計画と探索プロセスを分離するフレームワークであるDecoupleSearchを提案する。
提案手法は,各ノードが計画と探索のステップを表す推論木を構築する。
推論中、階層的ビームサーチは、計画と探索候補を二重値モデルで反復的に洗練する。
論文 参考訳(メタデータ) (2025-09-07T13:45:09Z) - The benefits of query-based KGQA systems for complex and temporal questions in LLM era [55.20230501807337]
大規模言語モデルは質問回答(QA)に優れていますが、マルチホップ推論や時間的質問には苦戦しています。
クエリベースの知識グラフ QA (KGQA) は、直接回答の代わりに実行可能なクエリを生成するモジュール形式の代替手段を提供する。
WikiData QAのためのマルチステージクエリベースのフレームワークについて検討し、課題のあるマルチホップと時間ベンチマークのパフォーマンスを向上させるマルチステージアプローチを提案する。
論文 参考訳(メタデータ) (2025-07-16T06:41:03Z) - Credible Plan-Driven RAG Method for Multi-Hop Question Answering [2.5772544412212985]
PDCA(Plan-Do-Check-Act)サイクルにインスパイアされた新しいフレームワークであるPAR-RAG(Plan-then-Act-and-Review RAG)を提案する。
Par-RAGは、現在の質問の意味的な複雑さにマッチした例を選び、複雑さを意識したトップダウンプランニングをガイドする。
二重検証機構は、中間誤差を評価し修正し、推論プロセスが事実上基底のままであることを保証する。
論文 参考訳(メタデータ) (2025-04-23T15:03:17Z) - GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval [52.47514434103737]
GRITHopper-7Bは,最先端性能を実現する新しいマルチホップ高密度検索モデルである。
GRITHopperは、因果言語モデリングと密集した検索訓練を統合することで、生成的および表現的命令チューニングを組み合わせる。
検索後言語モデリングと呼ばれる検索プロセスの後に追加のコンテキストを組み込むことで,検索性能が向上することがわかった。
論文 参考訳(メタデータ) (2025-03-10T16:42:48Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - Performance Prediction for Multi-hop Questions [7.388002745070808]
オープンドメイン型マルチホップ質問の性能を予測するための検索前手法であるmultHPを提案する。
評価の結果,提案モデルが従来のシングルホップQPPモデルよりも優れた性能を示すことが示唆された。
論文 参考訳(メタデータ) (2023-08-12T01:34:41Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
本稿では,単純な生成手法(PathFid)を提案する。
PathFidは、マルチホップ質問に対する回答を解決するための推論プロセスを明示的にモデル化する。
実験の結果,PathFidは2つのマルチホップQAデータセットに対して高い性能向上をもたらすことが示された。
論文 参考訳(メタデータ) (2022-05-18T21:57:59Z) - Adaptive Information Seeking for Open-Domain Question Answering [61.39330982757494]
本稿では,オープンドメイン質問応答,すなわちAISOに対する適応型情報探索手法を提案する。
学習方針によると、AISOは適切な検索行動を選択し、各ステップで行方不明の証拠を探すことができる。
AISOは、検索と回答の評価の両方の観点から、事前定義された戦略で全てのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2021-09-14T15:08:13Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。