論文の概要: GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
- arxiv url: http://arxiv.org/abs/2503.07519v1
- Date: Mon, 10 Mar 2025 16:42:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 18:54:21.248699
- Title: GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
- Title(参考訳): GRITHopper:分解不要マルチホップセンス検索
- Authors: Justus-Jonas Erker, Nils Reimers, Iryna Gurevych,
- Abstract要約: GRITHopper-7Bは,最先端性能を実現する新しいマルチホップ高密度検索モデルである。
GRITHopperは、因果言語モデリングと密集した検索訓練を統合することで、生成的および表現的命令チューニングを組み合わせる。
検索後言語モデリングと呼ばれる検索プロセスの後に追加のコンテキストを組み込むことで,検索性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 52.47514434103737
- License:
- Abstract: Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
- Abstract(参考訳): 分解に基づくマルチホップ検索手法は、複雑なクエリを分解するために、多くの自己回帰的なステップに依存している。
分解自由法はこの問題に対処するが、現在の分解自由法はより長いマルチホップ問題に対処し、アウト・オブ・ディストリビューション・データに一般化する。
これらの課題に対処するために, GRITHopper-7Bを提案する。
GRITHopperは、因果言語モデリングと密集した検索訓練を統合することで、生成的および表現的命令チューニングを組み合わせる。
制御された研究を通して、検索後言語モデリングと呼ばれる検索プロセスの後に追加のコンテキストを組み込むことで、検索性能が向上することがわかった。
トレーニング中に最終回答などの要素を含めることで、モデルはコンテキストをよりよく理解し、関連する情報を取得することを学ぶ。
GRITHopper-7Bは、マルチホップ高密度検索のための堅牢でスケーラブルで一般化可能なソリューションであり、将来、マルチホップ推論と検索機能を必要とするアプリケーションのために、コミュニティにリリースする。
関連論文リスト
- MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity [30.346398341996476]
本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2024-12-02T14:55:02Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-08-08T06:57:49Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
論文 参考訳(メタデータ) (2023-12-08T17:05:47Z) - End-to-End Beam Retrieval for Multi-Hop Question Answering [37.13580394608824]
マルチホップ質問応答は、複数の関連するパスを見つけ出し、複雑な質問に答えるためにステップバイステップの推論を行う。
以前のレトリバーは2ホップの質問のためにカスタマイズされ、そのほとんどは異なるホップで個別に訓練された。
マルチホップQAのためのエンドツーエンドのビーム検索フレームワークであるビーム検索について紹介する。
論文 参考訳(メタデータ) (2023-08-17T13:24:14Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
マルチモーダルなマルチホップ質問応答は、異なるモーダルから複数の入力ソースを推論することで質問に答える。
既存の手法は、しばしば別々に証拠を検索し、その後言語モデルを使用して、得られた証拠に基づいて回答を生成する。
本稿では,これらの問題に対処するため,構造化知識と統一検索生成(RG)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
本稿では,段落を逐次データとしてモデル化し,マルチホップ情報検索をシーケンスラベリングタスクの一種とみなす新しいアーキテクチャを提案する。
本手法は,公開テキストマルチホップQAデータセットであるHotpotQAのフルwikiとイントラクタサブタスクの両方で評価する。
論文 参考訳(メタデータ) (2021-02-07T08:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。