論文の概要: Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
- arxiv url: http://arxiv.org/abs/2601.00578v1
- Date: Fri, 02 Jan 2026 05:31:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.528558
- Title: Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
- Title(参考訳): 再現可能な学習:ロバストニューラルネットワークのカスタムロス設計
- Authors: Waqas Ahmed, Sheeba Samuel, Kevin Coakley, Birgitta Koenig-Ries, Odd Erik Gundersen,
- Abstract要約: 予測精度とトレーニング安定性のバランスをとるカスタムロス関数(CLF)を提案する。
CLFは予測性能を犠牲にすることなくトレーニングを大幅に改善する。
これらの結果は、より安定的で信頼性があり、信頼できるニューラルネットワークを開発するための効率的かつ効率的な戦略として、CLFを確立している。
- 参考スコア(独自算出の注目度): 4.3094059981414405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enhance the reproducibility and reliability of deep learning models, we address a critical gap in current training methodologies: the lack of mechanisms that ensure consistent and robust performance across runs. Our empirical analysis reveals that even under controlled initialization and training conditions, the accuracy of the model can exhibit significant variability. To address this issue, we propose a Custom Loss Function (CLF) that reduces the sensitivity of training outcomes to stochastic factors such as weight initialization and data shuffling. By fine-tuning its parameters, CLF explicitly balances predictive accuracy with training stability, leading to more consistent and reliable model performance. Extensive experiments across diverse architectures for both image classification and time series forecasting demonstrate that our approach significantly improves training robustness without sacrificing predictive performance. These results establish CLF as an effective and efficient strategy for developing more stable, reliable and trustworthy neural networks.
- Abstract(参考訳): 深層学習モデルの再現性と信頼性を高めるため、我々は現在の訓練手法における重要なギャップ、すなわち、実行中における一貫性と堅牢性を保証するメカニズムの欠如に対処する。
実験により,制御初期化および訓練条件下であっても,モデルの精度は有意な変動を示すことが明らかとなった。
この問題に対処するために、重量初期化やデータシャッフルといった確率的要因に対するトレーニング結果の感度を低下させるカスタムロス関数(CLF)を提案する。
パラメータを微調整することで、CLFは予測精度とトレーニングの安定性のバランスを明確化し、より一貫性があり信頼性の高いモデル性能をもたらす。
画像分類と時系列予測の両方のための多種多様なアーキテクチャにわたる大規模な実験により、我々の手法は予測性能を犠牲にすることなく、トレーニングの堅牢性を大幅に向上することを示した。
これらの結果は、より安定的で信頼性があり、信頼できるニューラルネットワークを開発するための効率的かつ効率的な戦略として、CLFを確立している。
関連論文リスト
- SG-OIF: A Stability-Guided Online Influence Framework for Reliable Vision Data [6.4391040754741296]
本稿では,テスト予測に対するトレーニングポイントの影響を近似するための安定誘導オンライン影響フレームワーク(SG-OIF)を提案する。
CIFAR-10の上位1%の予測サンプルでは,SG-OIFが91.1%,MNISTの99.8%のAUPRスコアが得られた。
論文 参考訳(メタデータ) (2025-11-21T19:58:54Z) - Contrastive Knowledge Transfer and Robust Optimization for Secure Alignment of Large Language Models [9.353236468990945]
本稿では,安全アライメントとロバストネスにおける大規模言語モデルの限界に対処する。
コントラスト蒸留とノイズロバストトレーニングを組み合わせた微調整法を提案する。
その結果,本手法は知識伝達,堅牢性,全体的な安全性において,既存のベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2025-10-31T00:54:33Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,リトレーニングを繰り返して安定なモデル列を見つけるためのモデルに依存しないフレームワークを提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
平均的に、予測力の2%の低下は、安定性の30%の改善につながることが判明した。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。