論文の概要: Categorical Reparameterization with Denoising Diffusion models
- arxiv url: http://arxiv.org/abs/2601.00781v1
- Date: Fri, 02 Jan 2026 18:30:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.619015
- Title: Categorical Reparameterization with Denoising Diffusion models
- Title(参考訳): Denoising Diffusion Model を用いたカテゴリー再パラメータ化
- Authors: Samson Gourevitch, Alain Durmus, Eric Moulines, Jimmy Olsson, Yazid Janati,
- Abstract要約: カテゴリー分布の拡散に基づくソフトリパラメータ化を提案する。
実験の結果,提案手法は様々なベンチマーク上での競合性や最適化性能の向上をもたらすことがわかった。
- 参考スコア(独自算出の注目度): 33.643089978457155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient-based optimization with categorical variables typically relies on score-function estimators, which are unbiased but noisy, or on continuous relaxations that replace the discrete distribution with a smooth surrogate admitting a pathwise (reparameterized) gradient, at the cost of optimizing a biased, temperature-dependent objective. In this paper, we extend this family of relaxations by introducing a diffusion-based soft reparameterization for categorical distributions. For these distributions, the denoiser under a Gaussian noising process admits a closed form and can be computed efficiently, yielding a training-free diffusion sampler through which we can backpropagate. Our experiments show that the proposed reparameterization trick yields competitive or improved optimization performance on various benchmarks.
- Abstract(参考訳): カテゴリー変数によるグラディエントに基づく最適化は、一般にスコア関数推定器に頼っているが、これは偏りはあるがノイズが多いため、偏りのある温度依存の目的を最適化するコストで、離散分布を滑らかな(パラメータ化)勾配を許容するスムーズなサロゲートに置き換える連続的な緩和に依存する。
本稿では,拡散に基づくソフトリパラメトリゼーションを導入して,この緩和の系を拡張した。
これらの分布について、ガウスノジング過程のデノイザーは閉じた形式を許容し、効率的に計算でき、トレーニング不要な拡散サンプリング器を生成できる。
実験の結果,提案手法は様々なベンチマーク上での競合性や最適化性能の向上をもたらすことがわかった。
関連論文リスト
- On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization [57.179679246370114]
既存の手法の潜在的な制限は、ステップサイズが提案されない限り、ほとんどの摂動推定器に固有のバイアスである。
本稿では, 良好な構成を維持しつつ, バイアスを排除した非バイアス勾配スケーリング推定器のファミリーを提案する。
論文 参考訳(メタデータ) (2025-10-22T18:25:43Z) - Implicit Diffusion: Efficient Optimization through Stochastic Sampling [46.049117719591635]
パラメータ化拡散により暗黙的に定義された分布を最適化するアルゴリズムを提案する。
本稿では,これらのプロセスの1次最適化のための一般的なフレームワークについて紹介する。
エネルギーベースモデルのトレーニングや拡散の微調整に応用する。
論文 参考訳(メタデータ) (2024-02-08T08:00:11Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic
Divergence [17.665255113864795]
緩和されたカテゴリー分布のクルバック・リーブラー発散(KLD)の上界に対応する新しい発散型計量について述べる。
また、連続表現と緩和表現の両方をうまくモデル化できる緩和された分類的有界変分オートエンコーダ(ReCAB-VAE)を提案する。
論文 参考訳(メタデータ) (2022-05-09T08:11:46Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Reliable Categorical Variational Inference with Mixture of Discrete
Normalizing Flows [10.406659081400354]
変分近似は、サンプリングによって推定される予測の勾配に基づく最適化に基づいている。
カテゴリー分布のGumbel-Softmaxのような連続緩和は勾配に基づく最適化を可能にするが、離散的な観測のために有効な確率質量を定義しない。
実際には、緩和の量を選択することは困難であり、望ましいものと一致しない目的を最適化する必要がある。
論文 参考訳(メタデータ) (2020-06-28T10:39:39Z) - Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables [16.643346012854156]
ノードの勾配を評価することは、深層生成モデリングコミュニティにおいて重要な研究課題の1つである。
本稿では,連続緩和を伴うGumbel-Softmax推定器の一般バージョンを提案する。
論文 参考訳(メタデータ) (2020-03-04T01:13:15Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。