論文の概要: Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables
- arxiv url: http://arxiv.org/abs/2003.01847v2
- Date: Tue, 9 Jun 2020 10:38:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:14:22.055917
- Title: Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables
- Title(参考訳): 離散確率変数に対する一般化ガムベル・ソフトマックス勾配推定器
- Authors: Weonyoung Joo, Dongjun Kim, Seungjae Shin, Il-Chul Moon
- Abstract要約: ノードの勾配を評価することは、深層生成モデリングコミュニティにおいて重要な研究課題の1つである。
本稿では,連続緩和を伴うGumbel-Softmax推定器の一般バージョンを提案する。
- 参考スコア(独自算出の注目度): 16.643346012854156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the gradients of stochastic nodes is one of the crucial research
questions in the deep generative modeling community, which enables the gradient
descent optimization on neural network parameters. This estimation problem
becomes further complex when we regard the stochastic nodes to be discrete
because pathwise derivative techniques cannot be applied. Hence, the stochastic
gradient estimation of discrete distributions requires either a score function
method or continuous relaxation of the discrete random variables. This paper
proposes a general version of the Gumbel-Softmax estimator with continuous
relaxation, and this estimator is able to relax the discreteness of probability
distributions including more diverse types, other than categorical and
Bernoulli. In detail, we utilize the truncation of discrete random variables
and the Gumbel-Softmax trick with a linear transformation for the relaxed
reparameterization. The proposed approach enables the relaxed discrete random
variable to be reparameterized and to backpropagated through a large scale
stochastic computational graph. Our experiments consist of (1) synthetic data
analyses, which show the efficacy of our methods; and (2) applications on VAE
and topic model, which demonstrate the value of the proposed estimation in
practices.
- Abstract(参考訳): 確率ノードの勾配の推定は、ニューラルネットワークパラメータの勾配降下最適化を可能にするディープジェネレーティブモデリングコミュニティにおける重要な研究課題の1つである。
この推定問題は、経路微分法を適用することができないため、確率ノードを離散化していると考えるとさらに複雑になる。
したがって、離散分布の確率的勾配推定は、スコア関数法または離散確率変数の連続緩和を必要とする。
本稿では,連続緩和を伴うGumbel-Softmax推定器の一般バージョンを提案し,この推定器は分類型やベルヌーイ以外の多種多様を含む確率分布の離散性を緩和することができる。
より詳しくは、離散確率変数のトランケーションとGumbel-Softmax トリックを緩和された再パラメータ化のための線形変換で利用する。
提案手法により、緩和された離散確率変数を再パラメータ化し、大規模確率計算グラフで逆伝播することができる。
本実験は,(1) 提案手法の有効性を示す合成データ分析,(2) VAEおよびトピックモデルへの応用,および,提案手法の有効性を示す。
関連論文リスト
- Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation [59.86921150579892]
アルゴリズム,演算子,シミュレータ,その他の微分不可能関数の微分可能緩和に対する勾配推定の問題に対処する。
我々は、微分可能なソートとランキングのための分散化戦略、グラフ上の微分可能なショートパス、ポーズ推定のための微分可能なレンダリング、および微分可能なCryo-ETシミュレーションを開発する。
論文 参考訳(メタデータ) (2024-10-10T17:10:00Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
本稿では,多種多様なカウンターファクトの集合を推定する確率的パラダイムを提案する。
摂動を事前分布関数によるランダム変数として扱う。
収束特性の優れた勾配ベースサンプリング器は、後方サンプルを効率的に計算する。
論文 参考訳(メタデータ) (2023-01-21T00:21:11Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Reliable Categorical Variational Inference with Mixture of Discrete
Normalizing Flows [10.406659081400354]
変分近似は、サンプリングによって推定される予測の勾配に基づく最適化に基づいている。
カテゴリー分布のGumbel-Softmaxのような連続緩和は勾配に基づく最適化を可能にするが、離散的な観測のために有効な確率質量を定義しない。
実際には、緩和の量を選択することは困難であり、望ましいものと一致しない目的を最適化する必要がある。
論文 参考訳(メタデータ) (2020-06-28T10:39:39Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
勾配推定は統計学と学習理論において重要である。
ここでは古典的な回帰設定を考えると、実値の正方形可積分 r.v.$Y$ が予測される。
代替推定法で得られた値に対して, 漸近的境界が改良されることを証明した。
論文 参考訳(メタデータ) (2020-06-26T15:19:43Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。