論文の概要: Comment on: Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant for Essay Writing Tasks
- arxiv url: http://arxiv.org/abs/2601.00856v1
- Date: Mon, 29 Dec 2025 23:47:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:21.793685
- Title: Comment on: Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant for Essay Writing Tasks
- Title(参考訳): ChatGPTの脳:AIアシスタントを用いた評価作業における認知的負債の蓄積
- Authors: Milos Stankovic, Ella Hirche, Sarah Kollatzsch, Julia Nadine Doetsch,
- Abstract要約: 我々はこのような重要な研究を始めたことに対して、Kosmynaらを心から祝福する。
我々は,同書の査読論文に対する準備が整うような建設的なコメントを提供することを目標としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently published work titled Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant for Essay Writing Task by Kosmyna et al. (2025) has sparked a vivid debate on the topic of artificial intelligence (AI) and human performance. We sincerely congratulate Kosmyna et al. for initiating such important research, collecting a valuable dataset, and establishing highly automated pipelines for Natural Language Processing (NLP) analyses and scoring. We aim to provide constructive comments that may improve the manuscript's readiness for peer-reviewed publication, as some results by Kosmyna et al. (2025) could be interpreted more conservatively. Our primary concerns focus on: (i) study design considerations, including the limited sample size; (ii) the reproducibility of the analyses; (iii) methodological issues related to the EEG analysis; (iv) inconsistencies in the reporting of results; and (v) limited transparency in several aspects of the study's procedures and findings.
- Abstract(参考訳): 最近発表された"Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using a AI Assistant for Essay Writing Task by Kosmyna et al (2025)"は、人工知能(AI)と人間のパフォーマンスに関する、活発な議論を引き起こした。
Kosmynaらを祝って、このような重要な研究を開始し、貴重なデータセットを収集し、自然言語処理(NLP)分析とスコアリングのための高度に自動化されたパイプラインを構築しました。
Kosmyna et al (2025) によるいくつかの結果がより保守的に解釈できるため、我々は、写本の査読された出版に対する準備性を改善する建設的なコメントを提供することを目指している。
主な関心事は次のとおりである。
一 限られたサンプルのサイズを含む設計上の考察
二 分析の再現性
三 脳波分析に関する方法論上の問題
(四)結果報告の不整合及び
(v)研究の手順と発見のいくつかの面での透明性に制限があった。
関連論文リスト
- CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection [60.52240468810558]
我々は、AI生成ピアレビューの詳細なデータセットの上に構築されたコンテンツ指向ベンチマークであるCoCoNUTSを紹介する。
また、マルチタスク学習フレームワークを介してAIレビュー検出を行うCoCoDetを開発し、レビューコンテンツにおけるAIのより正確で堅牢な検出を実現する。
論文 参考訳(メタデータ) (2025-08-28T06:03:11Z) - Are Large Language Models Ready for Business Integration? A Study on Generative AI Adoption [0.6144680854063939]
本研究では,Google Geminiのような他の大規模言語モデル(LLM)のビジネスアプリケーションへの適用性について検討する。
ディズニーランドの異なる支店からの42,654件のレビューデータセットが採用された。
その結果、75%の成功率、25%のエラー、モデル自己参照の事例など、反応のスペクトルが示された。
論文 参考訳(メタデータ) (2025-01-28T21:01:22Z) - STRICTA: Structured Reasoning in Critical Text Assessment for Peer Review and Beyond [68.47402386668846]
本研究では,テキストアセスメントをステップワイド推論プロセスとしてモデル化するために,Structured Reasoning In Critical Text Assessment (STRICTA)を導入する。
STRICTAは、因果性理論に基づく相互接続推論ステップのグラフに評価を分解する。
約40人のバイオメディカル専門家が20以上の論文について4000以上の推論ステップのデータセットにSTRICTAを適用した。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing [25.572926673827165]
このケーススタディは、学術的な仕事において、責任と効果的なAI統合を保証するためのAIの限界を認識し、設計、出力分析、そして認識することの重要性を強調します。
この論文は、効果的なプロンプト戦略を探求し、Gen AIモデルの比較分析を提供することにより、ヒューマン・コンピュータインタラクションの分野に貢献する。
論文 参考訳(メタデータ) (2024-04-23T19:06:39Z) - Is English the New Programming Language? How About Pseudo-code Engineering? [0.0]
本研究では,OpenAIの指導的言語モデルであるChatGPTに異なる入力形式がどのような影響を及ぼすかを検討する。
それは、意図、解釈可能性、完全性、創造性の4つのカテゴリにまたがるモデルの習熟度を調べる。
論文 参考訳(メタデータ) (2024-04-08T16:28:52Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - pyBibX -- A Python Library for Bibliometric and Scientometric Analysis
Powered with Artificial Intelligence Tools [0.0]
pyBibXは、Scopus、Web of Science、PubMedからソースされた生データファイルの総合的な書誌的および科学的な分析を行うために開発されたピソンライブラリである。
このライブラリは総合的なEDAを実行し、視覚的に魅力的な図形を通して結果を提示する。
埋め込み、トピックモデリング、テキスト要約、その他の一般的な言語処理タスクを含むAI機能を備えている。
論文 参考訳(メタデータ) (2023-04-27T20:06:07Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。