論文の概要: RFAssigner: A Generic Label Assignment Strategy for Dense Object Detection
- arxiv url: http://arxiv.org/abs/2601.01240v1
- Date: Sat, 03 Jan 2026 17:19:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.140391
- Title: RFAssigner: A Generic Label Assignment Strategy for Dense Object Detection
- Title(参考訳): RFAssigner:Dense Object Detectionのためのジェネリックラベルアサインメント戦略
- Authors: Ziqian Guan, Xieyi Fu, Yuting Wang, Haowen Xiao, Jiarui Zhu, Yingying Zhu, Yongtao Liu, Lin Gu,
- Abstract要約: 最先端の手法は通常、各トレーニングサンプルに正と負の重みを割り当て、トレーニング中の割り当てスキームを最適化する。
我々は、高密度検出器のマルチスケール学習能力を高めるために設計された新しい割り当て戦略であるRFerを紹介する。
RFerは、割り当てられていないプールから補助的な正のサンプルを適応的に選択し、オブジェクトスケール間でよりバランスのとれた学習プロセスを促進する。
- 参考スコア(独自算出の注目度): 9.226320199517259
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Label assignment is a critical component in training dense object detectors. State-of-the-art methods typically assign each training sample a positive and a negative weight, optimizing the assignment scheme during training. However, these strategies often assign an insufficient number of positive samples to small objects, leading to a scale imbalance during training. To address this limitation, we introduce RFAssigner, a novel assignment strategy designed to enhance the multi-scale learning capabilities of dense detectors. RFAssigner first establishes an initial set of positive samples using a point-based prior. It then leverages a Gaussian Receptive Field (GRF) distance to measure the similarity between the GRFs of unassigned candidate locations and the ground-truth objects. Based on this metric, RFAssigner adaptively selects supplementary positive samples from the unassigned pool, promoting a more balanced learning process across object scales. Comprehensive experiments on three datasets with distinct object scale distributions validate the effectiveness and generalizability of our method. Notably, a single FCOS-ResNet-50 detector equipped with RFAssigner achieves state-of-the-art performance across all object scales, consistently outperforming existing strategies without requiring auxiliary modules or heuristics.
- Abstract(参考訳): ラベル割り当ては、密度の高い物体検出器の訓練において重要な要素である。
最先端の手法は通常、各トレーニングサンプルに正と負の重みを割り当て、トレーニング中の割り当てスキームを最適化する。
しかしながら、これらの戦略は、小さなオブジェクトに不十分な正のサンプルを割り当てることがしばしばあり、訓練中にスケールの不均衡を引き起こす。
この制限に対処するために、高密度検出器のマルチスケール学習能力を高めるために設計された新しい割り当て戦略であるRFAssignerを導入する。
RFAssignerはまず、ポイントベースの先行値を使用して、最初の正のサンプルセットを確立する。
次に、ガウス受容場(GRF)距離を利用して、指定されていない候補位置のGRFと接地トラス物体との類似性を測定する。
この指標に基づいて、RFAssignerは、割り当てられていないプールから補助的な正のサンプルを適応的に選択し、オブジェクトスケールをまたいだよりバランスのとれた学習プロセスを促進する。
オブジェクトスケール分布が異なる3つのデータセットに対する総合的な実験により、本手法の有効性と一般化性を検証する。
特に、RFAssignerを搭載した単一のFCOS-ResNet-50検出器は、すべてのオブジェクトスケールで最先端のパフォーマンスを実現し、補助モジュールやヒューリスティックを必要とせず、既存の戦略を一貫して上回っている。
関連論文リスト
- Long-Tailed Object Detection Pre-training: Dynamic Rebalancing Contrastive Learning with Dual Reconstruction [28.359463356384463]
2DRCL(Dynamic Rebalance Contrastive Learning with Dual Reconstruction)と呼ばれる,オブジェクト検出のための新たな事前学習フレームワークを導入する。
提案手法は,グローバルな文脈意味論と詳細な局所パターンの両方を捉えることによって,事前学習とオブジェクト検出を一致させる,ホロスティック・ローカル・コントラスト学習機構に基づいている。
COCOおよびLVIS v1.0データセットの実験により,本手法の有効性,特に末尾クラスにおけるmAP/APスコアの改善が示された。
論文 参考訳(メタデータ) (2024-11-14T13:59:01Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
この研究は、ゼロショット分類によって潜在的に新しいクラスを特定するための単純かつ効率的な戦略を導入する。
このアプローチは、アノテーションやデータセット、再学習を必要とせずに、新しいクラスのリコールと精度を高めるセルフトレーニング戦略として言及する。
LVIS、V3Det、COCOを含む3つのデータセットに対する実証的な評価は、ベースラインのパフォーマンスを大幅に改善したことを示している。
論文 参考訳(メタデータ) (2023-10-02T17:52:24Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - A Global Model Approach to Robust Few-Shot SAR Automatic Target
Recognition [6.260916845720537]
ディープラーニングベースのSAR自動ターゲット認識(ATR)モデルをトレーニングするために、クラス毎に数百のラベル付きサンプルを収集できるとは限らない。
この研究は特に数発のSAR ATR問題に対処しており、興味のあるタスクをサポートするためにラベル付きサンプルがわずかである。
論文 参考訳(メタデータ) (2023-03-20T00:24:05Z) - Dense Learning based Semi-Supervised Object Detection [46.885301243656045]
半教師付きオブジェクト検出(SSOD)は、大量のラベルのないデータの助けを借りて、オブジェクト検出器の訓練と展開を容易にすることを目的としている。
本稿では,DenSe Learningに基づくアンカーフリーSSODアルゴリズムを提案する。
実験はMS-COCOとPASCAL-VOCで行われ,提案手法は新たな最先端SSOD性能を記録する。
論文 参考訳(メタデータ) (2022-04-15T02:31:02Z) - Improving speech recognition models with small samples for air traffic
control systems [9.322392779428505]
本研究では, 小さなトレーニングサンプルの課題に対処すべく, 事前学習とトランスファー学習に基づく新しいトレーニング手法を提案する。
3つの実際のATCデータセットを使用して、提案されたASRモデルとトレーニング戦略を検証する。
実験の結果,ASRの性能は3つのデータセットで大幅に向上した。
論文 参考訳(メタデータ) (2021-02-16T08:28:52Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
本稿では,新しい数ショット学習タスクのための特定のメトリックを生成するための,新しい深度メタジェネレーション手法を提案する。
本研究では,各タスクの識別基準を生成するのに十分なフレキシブルな3層深い注意ネットワークを用いて,メトリクスを構造化する。
特に挑戦的なケースでは、最先端の競合他社よりも驚くほどパフォーマンスが向上しています。
論文 参考訳(メタデータ) (2020-12-03T02:07:43Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot Object Detection (FSOD) は、ディテクターがトレーニングインスタンスをほとんど持たない未確認のクラスに適応するのに役立つ。
FSODにおけるオブジェクトスケールを拡張化するためのMPSR(Multi-scale Positive Sample Refinement)アプローチを提案する。
MPSRは、オブジェクトピラミッドとして多スケールの正のサンプルを生成し、様々なスケールで予測を洗練させる。
論文 参考訳(メタデータ) (2020-07-18T09:48:29Z) - AutoAssign: Differentiable Label Assignment for Dense Object Detection [94.24431503373884]
Auto COCOは、物体検出のためのアンカーフリー検出器である。
外観認識は、完全に微分可能な重み付け機構によって実現される。
我々の最良のモデルでは52.1%のAPが達成され、既存の1段検出器よりも優れている。
論文 参考訳(メタデータ) (2020-07-07T14:32:21Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。