論文の概要: Stochastic Control Methods for Optimization
- arxiv url: http://arxiv.org/abs/2601.01248v2
- Date: Sun, 11 Jan 2026 15:01:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 15:02:56.079749
- Title: Stochastic Control Methods for Optimization
- Title(参考訳): 最適化のための確率的制御法
- Authors: Jinniao Qiu,
- Abstract要約: ユークリッド設定では、正規化制御問題の問題を解析する。
大域的な測度では、マスターフィールド問題によって特徴づけられる正規化された平均場問題を定式化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate a stochastic control framework for global optimization over both Euclidean spaces and the Wasserstein space of probability measures, where the objective function may be non-convex and/or non-differentiable. In the Euclidean setting, the original minimization problem is approximated by a family of regularized stochastic control problems; using dynamic programming, we analyze the associated Hamilton--Jacobi--Bellman equations and obtain tractable representations via the Cole--Hopf transformation and the Feynman--Kac formula. For optimization over probability measures, we formulate a regularized mean-field control problem characterized by a master equation, and further approximate it by controlled $N$-particle systems. We establish that, as the regularization parameter tends to zero (and as the particle number tends to infinity for the optimization over probability measures), the value of the control problem converges to the global minimum of the original objective. Building on the resulting probabilistic representations, Monte Carlo-based numerical schemes are proposed and numerical experiments are reported to illustrate the effectiveness of the methods and to support the theoretical convergence rates.
- Abstract(参考訳): 本研究では,確率測度のユークリッド空間とワッサーシュタイン空間の両方に対する大域的最適化のための確率的制御フレームワークについて検討する。
動的プログラミングを用いて、関連するハミルトン-ヤコビ-ベルマン方程式を解析し、コール-ホップ変換とファインマン-カック公式を通じてトラクタブル表現を得る。
確率測度を最適化するために、マスター方程式を特徴とする正規化平均場制御問題を定式化し、さらに制御された$N$粒子系により近似する。
正規化パラメータがゼロになる傾向にある(そして、粒子数が確率測度の最適化に無限大になる傾向にある)ので、制御問題の値は元の目的の大域的最小値に収束する。
結果の確率的表現に基づいてモンテカルロをベースとした数値スキームを提案し,提案手法の有効性を示す数値実験を行い,理論収束率を支持する。
関連論文リスト
- Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models [13.03355083378673]
Mean-Field Schrodinger Bridge (MFSB) 問題は、最小の作業制御ポリシーを見つけることを目的とした最適化問題である。
マルチエージェント制御の文脈において、目的は同一の相互作用する協調エージェントの群の構成を制御することである。
論文 参考訳(メタデータ) (2025-03-31T04:01:04Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Harmonic Path Integral Diffusion [0.4527270266697462]
本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法では,状態空間の起点を中心とするデルタ関数を$t=0$とし,ターゲット分布に$t=1$で変換する。
これらのアルゴリズムは他のサンプリング手法、特にシミュレートおよびパス積分サンプリングと対比し、解析制御、精度、計算効率の点でそれらの利点を強調した。
論文 参考訳(メタデータ) (2024-09-23T16:20:21Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [53.03951222945921]
我々はスムーズな(摂動された)ポリシーを解析し、線形オラクルが使用する方向に対して制御されたランダムな摂動を付加する。
我々の主な貢献は、過剰リスクを摂動バイアス、統計的推定誤差、最適化誤差に分解する一般化境界である。
車両のスケジューリングやスムーズ化がトラクタブルトレーニングと制御された一般化の両方を可能にしていることを示す。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse optimisation on Measures [3.377298662011438]
本稿では,コニックパーティクルグラディエントDescent(CPGD)のスケーラビリティを高めるために,ランダム特徴と協調してグラディエントDescent戦略を利用する新しいアルゴリズムを提案する。
以下の重要な結果を示す厳密な数学的証明を提供する: $mathrm(i)$ 降下軌道に沿った解測度の総変動ノルムは有界であり、安定性を確保し、望ましくない発散を防ぐ。$mathrm(ii)$ 収束率$O(log(K)/sqrtK)$$$$$K以上の大域収束保証を確立する。
論文 参考訳(メタデータ) (2023-12-10T20:41:43Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。