論文の概要: Harmonic Path Integral Diffusion
- arxiv url: http://arxiv.org/abs/2409.15166v2
- Date: Wed, 13 Nov 2024 11:05:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:01.952981
- Title: Harmonic Path Integral Diffusion
- Title(参考訳): 高調波路積分拡散
- Authors: Hamidreza Behjoo, Michael Chertkov,
- Abstract要約: 本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法では,状態空間の起点を中心とするデルタ関数を$t=0$とし,ターゲット分布に$t=1$で変換する。
これらのアルゴリズムは他のサンプリング手法、特にシミュレートおよびパス積分サンプリングと対比し、解析制御、精度、計算効率の点でそれらの利点を強調した。
- 参考スコア(独自算出の注目度): 0.4527270266697462
- License:
- Abstract: In this manuscript, we present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples. Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, optimally transforming it into the target distribution at $t=1$. We formulate this as a Stochastic Optimal Control problem of the Path Integral Control type, with a cost function comprising (in its basic form) a quadratic control term, a quadratic state term, and a terminal constraint. This framework, which we refer to as Harmonic Path Integral Diffusion (H-PID), leverages an analytical solution through a mapping to an auxiliary quantum harmonic oscillator in imaginary time. The H-PID framework results in a set of efficient sampling algorithms, without the incorporation of Neural Networks. The algorithms are validated on two standard use cases: a mixture of Gaussians over a grid and images from CIFAR-10. The transparency of the method allows us to analyze the algorithms in detail, particularly revealing that the current weighted state is an order parameter for the dynamic phase transition, signaling earlier, at $t<1$, that the sample generation process is almost complete. We contrast these algorithms with other sampling methods, particularly simulated annealing and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency on benchmark problems. Additionally, we extend the methodology to more general cases where the underlying stochastic differential equation includes an external deterministic, possibly non-conservative force, and where the cost function incorporates a gauge potential term.
- Abstract(参考訳): 本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法は,状態空間の起点を中心とするデルタ関数を$t=0$とし,最適に目標分布に$t=1$で変換する。
我々はこれをパス積分制御型の確率的最適制御問題として定式化し、コスト関数は2次制御項、2次状態項、終端制約を含む。
このフレームワークはハーモニックパス積分拡散(H-PID)と呼ばれ、仮想時間における補助量子調和振動子への写像を通じて解析解を利用する。
H-PIDフレームワークは、ニューラルネットワークを組み込まずに、効率的なサンプリングアルゴリズムのセットをもたらす。
アルゴリズムはグリッド上のガウスの混合とCIFAR-10の画像の2つの標準的なユースケースで検証される。
この手法の透明性はアルゴリズムを詳細に解析し、特に現在の重み付け状態が動的相転移の順序パラメータであることを明らかにする。
我々はこれらのアルゴリズムを,他のサンプリング手法,特にシミュレートされたアニールおよびパス積分サンプリングと対比し,ベンチマーク問題に対する解析的制御,精度,計算効率の観点からそれらの利点を強調した。
さらに、この方法論を、基礎となる確率微分方程式が外的決定論的、おそらく非保守的力を含み、コスト関数がゲージポテンシャル項を含むより一般的なケースにまで拡張する。
関連論文リスト
- HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
グラディエントアセンセントパルス工学(GRAPE)法は量子制御の最適化に広く用いられている。
我々は、コヒーレント制御と非コヒーレント制御の両方によって駆動されるオープン量子系の目的関数を最適化するために、GRAPE法を採用する。
状態-状態遷移問題に対する数値シミュレーションによりアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2023-07-17T13:37:18Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Discrete Adjoints for Accurate Numerical Optimization with Application
to Quantum Control [0.0]
本稿では,閉量子系における論理ゲートを実現するための最適制御問題について考察する。
システムは、シンプレクティックパーティショニングされたRunge-Kutta法であるStormer-Verletスキームと区別される。
キャリア波を内蔵したB-スプラインに基づく制御関数のパラメータ化も導入する。
論文 参考訳(メタデータ) (2020-01-04T00:02:23Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。