論文の概要: Unveiling the Heart-Brain Connection: An Analysis of ECG in Cognitive Performance
- arxiv url: http://arxiv.org/abs/2601.01424v1
- Date: Sun, 04 Jan 2026 08:06:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.339233
- Title: Unveiling the Heart-Brain Connection: An Analysis of ECG in Cognitive Performance
- Title(参考訳): 心-脳結合の解離:認知機能における心電図の分析
- Authors: Akshay Sasi, Malavika Pradeep, Nusaibah Farrukh, Rahul Venugopal, Elizabeth Sherly,
- Abstract要約: ECG信号は認知負荷を確実に反映し、脳波に基づく指標のプロキシとして機能する。
脳波表現型認知空間にECG特徴を投影するクロスモーダルなXGBoostフレームワークを提案する。
本研究は心電図を日常的な認知モニタリングのための解釈可能でリアルタイムなウェアラブルソリューションとして捉えたものである。
- 参考スコア(独自算出の注目度): 0.1631115063641726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the interaction of neural and cardiac systems during cognitive activity is critical to advancing physiological computing. Although EEG has been the gold standard for assessing mental workload, its limited portability restricts its real-world use. Widely available ECG through wearable devices proposes a pragmatic alternative. This research investigates whether ECG signals can reliably reflect cognitive load and serve as proxies for EEG-based indicators. In this work, we present multimodal data acquired from two different paradigms involving working-memory and passive-listening tasks. For each modality, we extracted ECG time-domain HRV metrics and Catch22 descriptors against EEG spectral and Catch22 features, respectively. We propose a cross-modal XGBoost framework to project the ECG features onto EEG-representative cognitive spaces, thereby allowing workload inferences using only ECG. Our results show that ECG-derived projections expressively capture variation in cognitive states and provide good support for accurate classification. Our findings underpin ECG as an interpretable, real-time, wearable solution for everyday cognitive monitoring.
- Abstract(参考訳): 認知活動中の神経系と心臓系の相互作用を理解することは、生理学的コンピューティングの進歩に不可欠である。
EEGは精神的な作業量を評価するための金の標準であったが、移植性に制限があるため、実際の使用は制限されている。
ウェアラブルデバイスを通じて広く利用可能なECGは、実用的な代替案を提案する。
本研究は,脳波信号が認知負荷を確実に反映し,脳波に基づく指標のプロキシとして機能するかどうかを検討する。
本研究では,作業記憶タスクと受動リストリングタスクを含む2つのパラダイムから得られたマルチモーダルデータについて述べる。
脳波スペクトルとCatch22特徴に対するECG時間領域HRVとCatch22記述子をそれぞれ抽出した。
我々は、ECGの特徴をEEG表現型認知空間に投影するクロスモーダルなXGBoostフレームワークを提案し、ECGのみを用いたワークロード推論を可能にする。
以上の結果から,心電図由来の投射は認知状態の変化を表現的に捉え,正確な分類を支援することが示唆された。
本研究は心電図を日常的な認知モニタリングのための解釈可能でリアルタイムなウェアラブルソリューションとして捉えたものである。
関連論文リスト
- Simulator and Experience Enhanced Diffusion Model for Comprehensive ECG Generation [52.19347532840774]
本稿では,心電図生成のための新しい生理シミュレータSE-Diffを提案する。
SE-Diffは、軽量常微分方程式(ODE)ベースのECGシミュレータをビートデコーダを介して拡散過程に統合する。
実世界のECGデータセットに対する大規模な実験により、SE-Diffは信号の忠実度とテキスト-ECGセマンティックアライメントの両方を改善している。
論文 参考訳(メタデータ) (2025-11-13T02:57:10Z) - EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks [23.243697999272825]
本稿では,不確実性を考慮した心電図埋め込みと心電図監視を利用して心電図に基づく心機能予測を改善する,確率的学生・教師モデルであるEchoingECGを紹介する。
提案手法では,確率的コントラストフレームワークであるPCME++とECHO-CLIPを併用し,ECHOの知識をECG表現に抽出する。
論文 参考訳(メタデータ) (2025-09-30T05:03:33Z) - UniECG: Understanding and Generating ECG in One Unified Model [26.641666246045133]
我々は、エビデンスベースのECG解釈とテキスト条件のECG生成タスクを同時に行うことができるECGの最初の統一モデルUniECGを提案する。
UniECGは、ユーザ入力に基づいてECGを自動で解釈または生成することを選択し、現在のECGモデルの能力境界を大幅に拡張することができる。
論文 参考訳(メタデータ) (2025-09-23T03:15:53Z) - EEG-MedRAG: Enhancing EEG-based Clinical Decision-Making via Hierarchical Hypergraph Retrieval-Augmented Generation [45.031633614714]
EEG-MedRAGは3層ハイパーグラフに基づく検索拡張生成フレームワークである。
EEGドメイン知識、個々の患者ケース、大規模リポジトリをトラバース可能なn-aryリレーショナルハイパーグラフに統合する。
第1回クロスリリース・クロスロールEEG臨床QAベンチマークを,7つの障害と5つの臨床的観点から紹介した。
論文 参考訳(メタデータ) (2025-08-19T11:12:58Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [44.50428701650495]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings [34.078819572852446]
心電図(ECG)は急性心臓発作の検出に非常に敏感である。
本稿では,実世界のECGデータからロバストな表現を抽出するための基礎モデルであるAnyECGを紹介する。
論文 参考訳(メタデータ) (2024-11-17T17:32:58Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
本稿では,シングルリードECG信号を対象とした自己教師型フレームワークNERULAを提案する。
NERULAのデュアルパスウェイアーキテクチャは、心電図再構成と非コントラスト学習を組み合わせて、詳細な心臓の特徴を抽出する。
学習スペクトルに生成経路と識別経路を組み合わせることで、様々なタスクにおいて最先端の自己教師付き学習ベンチマークより優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-21T14:01:57Z) - MEIT: Multimodal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [28.35107188450758]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。