論文の概要: grangersearch: An R Package for Exhaustive Granger Causality Testing with Tidyverse Integration
- arxiv url: http://arxiv.org/abs/2601.01604v1
- Date: Sun, 04 Jan 2026 17:06:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.558385
- Title: grangersearch: An R Package for Exhaustive Granger Causality Testing with Tidyverse Integration
- Title(参考訳): grangersearch: Tidyverse統合による排他的グランガー因果テストのためのRパッケージ
- Authors: Nikolaos Korfiatis,
- Abstract要約: grangersearchは、複数の時系列で徹底的なGranger因果検索を行うためのRパッケージである。
このパッケージはvarsインフラストラクチャをラップし、探索因果解析のためのシンプルなインターフェースを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces grangersearch, an R package for performing exhaustive Granger causality searches on multiple time series. The package provides: (1) exhaustive pairwise search across multiple variables, (2) automatic lag order optimization with visualization, (3) tidyverse-compatible syntax with pipe operators and non-standard evaluation, and (4) integration with the broom ecosystem through tidy() and glance() methods. The package wraps the vars infrastructure while providing a simple interface for exploratory causal analysis. We describe the statistical methodology, demonstrate the package through worked examples, and discuss practical considerations for applied researchers.
- Abstract(参考訳): 本稿では,複数の時系列に対して,徹底的なGranger因果探索を行うためのRパッケージであるgrangersearchを紹介する。
このパッケージは、(1)複数の変数をまたいだ徹底的なペアワイズ検索、(2)可視化による自動ラグオーダー最適化、(3)パイプ演算子とのTydyverse互換構文と非標準評価、(4)Tydy()およびScreen()メソッドによるBroomエコシステムとの統合を提供する。
このパッケージはvarsインフラストラクチャをラップし、探索因果解析のためのシンプルなインターフェースを提供する。
本稿では, 統計的手法を解説し, 実例によるパッケージの実証を行い, 応用研究者の実践的考察について考察する。
関連論文リスト
- GraphSearch: An Agentic Deep Searching Workflow for Graph Retrieval-Augmented Generation [35.65907480060404]
textscGraphSearchは、GraphRAGの二重チャネル検索を備えた新しいエージェントディープ検索ワークフローである。
textscGraphSearchは、従来の戦略よりも解答精度と生成品質を一貫して改善する。
論文 参考訳(メタデータ) (2025-09-26T07:45:56Z) - Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies) [46.54026795022501]
LLMs4OL 2025チャレンジのタスクA,B,Cに対処する包括的システムを提案する。
提案手法は、検索強化プロンプト、ゼロショット分類、アテンションに基づくグラフモデリングを組み合わせたものである。
これらのモジュラーでタスク固有のソリューションによって、公式のリーダーボードで上位の成果を得られるようになりました。
論文 参考訳(メタデータ) (2025-08-26T20:50:16Z) - Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval [22.33550491040999]
RAGは、大きな言語モデルを外部の証拠に基礎を置いているが、セマンティックに遠く離れた文書で答えをまとめなければならないと、いまだに混乱している。
私たちは、StatementGraphRAGとTopicGraphRAGという2つのプラグイン・アンド・プレイレトリバーを構築します。
提案手法は,検索リコールと正当性において平均23.1%の相対的改善を達成し,有意なチャンクベースRAGよりも優れていた。
論文 参考訳(メタデータ) (2025-06-09T17:58:35Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [62.640169289390535]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - CORG: Generating Answers from Complex, Interrelated Contexts [57.213304718157985]
現実世界のコーパスでは、知識は文書間で頻繁に再帰するが、曖昧な命名、時代遅れの情報、エラーのためにしばしば矛盾を含む。
以前の研究では、言語モデルはこれらの複雑さに苦しむことが示されており、典型的には孤立した単一要因に焦点を当てている。
複数のコンテキストを個別に処理されたグループに整理するフレームワークであるContext Organizer (CORG)を紹介する。
論文 参考訳(メタデータ) (2025-04-25T02:40:48Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQは、マルチタスク学習問題とエンティティペアの分布を回避する、シーングラフ生成の新しい定式化である。
我々は,DETRをベースとしたエンコーダ-デコーダ条件付きクエリを用いて,エンティティラベル空間を大幅に削減する。
実験結果から、TraCQは既存のシングルステージシーングラフ生成法よりも優れており、Visual Genomeデータセットの最先端の2段階メソッドを多く上回っていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T06:02:01Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet extract (ASTE) は感情分析における課題であり、人間の感情に対するきめ細かい洞察を提供することを目的としている。
既存のベンチマークは2つのドメインに限定されており、目に見えないドメイン上でのモデルパフォーマンスを評価しない。
各種ドメインのサンプルに注釈を付けることでドメイン拡張ベンチマークを導入し,ドメイン内設定とドメイン外設定の両方でモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-05-23T18:01:49Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - Weakly Supervised Visual Semantic Parsing [49.69377653925448]
SGG(Scene Graph Generation)は、画像からエンティティ、述語、それらの意味構造を抽出することを目的としている。
既存のSGGメソッドでは、トレーニングのために何百万もの手動アノテーション付きバウンディングボックスが必要である。
本稿では,ビジュアルセマンティック・パーシング,VSPNet,グラフベースの弱教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-08T03:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。