論文の概要: An Empirical Study of Monocular Human Body Measurement Under Weak Calibration
- arxiv url: http://arxiv.org/abs/2601.01639v1
- Date: Sun, 04 Jan 2026 19:05:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.580814
- Title: An Empirical Study of Monocular Human Body Measurement Under Weak Calibration
- Title(参考訳): 弱検診における単眼人体計測の実証的研究
- Authors: Gaurav Sekar,
- Abstract要約: 単眼のRGB画像から人体計測を推定することは、視線感度、明快な深度情報がないため、依然として困難である。
この研究は、ランドマークに基づく幾何学、ポーズ駆動回帰、およびオブジェクト校正されたシルエットの3つの弱い校正された単分子戦略に関する体系的な実証的研究を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating human body measurements from monocular RGB imagery remains challenging due to scale ambiguity, viewpoint sensitivity, and the absence of explicit depth information. This work presents a systematic empirical study of three weakly calibrated monocular strategies: landmark-based geometry, pose-driven regression, and object-calibrated silhouettes, evaluated under semi-constrained conditions using consumer-grade cameras. Rather than pursuing state-of-the-art accuracy, the study analyzes how differing calibration assumptions influence measurement behavior, robustness, and failure modes across varied body types. The results reveal a clear trade-off between user effort during calibration and the stability of resulting circumferential quantities. This paper serves as an empirical design reference for lightweight monocular human measurement systems intended for deployment on consumer devices.
- Abstract(参考訳): 単眼のRGB画像から人体計測を推定することは、視線感度、明快な深度情報がないため、依然として困難である。
本研究は, 目印に基づく幾何学, ポーズ駆動回帰, および物体校正されたシルエットの3つの弱校正単分子戦略を, コンシューマグレードカメラを用いた半拘束条件下で評価した, 系統的実証的研究である。
この研究は、最先端の精度を追求するのではなく、キャリブレーションの仮定の違いが測定行動、ロバスト性、そして様々な身体タイプにまたがる障害モードにどのように影響するかを分析する。
その結果, キャリブレーション中のユーザの労力と, 結果の周方向量の安定性との間には, 明確なトレードオフがあることが判明した。
本稿では,消費者デバイスへの展開を目的とした軽量単分子人体計測システムの実証設計基準として機能する。
関連論文リスト
- Validation of Human Pose Estimation and Human Mesh Recovery for Extracting Clinically Relevant Motion Data from Videos [79.62407455005561]
人間のポーズ推定を用いたマーカーレスモーションキャプチャは、IMUとMoCapのキネマティクスの結果とインラインで結果を生成する。
生成するデータの品質に関してはまだ改善の余地がありますが、この妥協はエラーの部屋にあると考えています。
論文 参考訳(メタデータ) (2025-03-18T22:18:33Z) - Measuring Physical Plausibility of 3D Human Poses Using Physics Simulation [19.26289173517333]
本研究では,任意の3次元姿勢推定モデルから予測された3次元ポーズの物理的妥当性と安定性を捉えるための2つの指標を提案する。
物理シミュレーションを用いて,既存の可視性測定値との相関と運動時の安定性の測定を行う。
論文 参考訳(メタデータ) (2025-02-06T20:15:49Z) - A Simple Strategy for Body Estimation from Partial-View Images [8.05538560322898]
仮想試行と製品パーソナライズは、現代オンラインショッピングにおいてますます重要になってきており、正確な身体計測推定の必要性を強調している。
従来の研究では、RGB画像から3次元の身体形状を推定する研究が進んでいるが、画像中の人間の観察スケールは、距離と体次元の2つの未知の要因に依存するため、本質的に不明瞭である。
対象骨格を所望の位置に移動させ, スケールを正規化し, 両変数の関係を解消する, モジュラーで単純な高さ正規化法を提案する。
論文 参考訳(メタデータ) (2024-04-14T16:55:23Z) - Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
全体のポーズと形状の推定は、単眼画像から人体全体の異なる振る舞いを共同で予測することを目的としている。
既存の手法では、既存のシナリオの複雑さの下で、しばしば劣化したパフォーマンスを示す。
全身のポーズと形状推定の堅牢性を高める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:17:42Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
モノクロ画像からの3次元運動回復のための従来の手法は、カメラ座標に依存するため、しばしば不足する。
W-HMRは、身体の歪み情報に基づいて「適切な」焦点長を予測する弱教師付き校正法である。
また,世界空間における可視的再構築のために,身体の向きを補正する OrientCorrect モジュールを提案する。
論文 参考訳(メタデータ) (2023-11-29T09:02:07Z) - ShaRPy: Shape Reconstruction and Hand Pose Estimation from RGB-D with
Uncertainty [6.559796851992517]
本稿では,最初のRGB-D形状再構成システムであるShaRPyを提案する。
ShaRPyはパーソナライズされた手の形を近似し、デジタルツインのより現実的で直感的な理解を促進する。
キーポイント検出ベンチマークを用いてShaRPyを評価し,筋骨格疾患の能動モニタリングのための手機能評価の質的結果を示した。
論文 参考訳(メタデータ) (2023-03-17T15:12:25Z) - Dense Prediction Transformer for Scale Estimation in Monocular Visual
Odometry [0.0]
本論文は, 単眼視覚計測システムにおけるスケール推定における高密度予測変換器モデルの適用性を示す。
実験結果から, 単分子系のスケールドリフト問題は, 深度マップの正確な推定により低減できることが示唆された。
論文 参考訳(メタデータ) (2022-10-04T16:29:21Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Calibrating Self-supervised Monocular Depth Estimation [77.77696851397539]
近年、ニューラルネットワークが深度を学習し、画像のシーケンスに変化を起こさせる能力を示す方法は、訓練信号として自己スーパービジョンのみを使用している。
カメラの構成や環境に関する事前情報を取り入れることで,センサの追加に頼ることなく,自己教師型定式化を用いて,スケールのあいまいさを排除し,深度を直接予測できることを示す。
論文 参考訳(メタデータ) (2020-09-16T14:35:45Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。