論文の概要: Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
- arxiv url: http://arxiv.org/abs/2601.01966v1
- Date: Mon, 05 Jan 2026 10:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.962557
- Title: Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
- Title(参考訳): リファインメント・プロヴァンス推論:モデル行動からLLM精製トレーニング・プロンプトを検出する
- Authors: Bo Yin, Qi Li, Runpeng Yu, Xinchao Wang,
- Abstract要約: 本稿では,Refinement Provenance Inference (RPI)監査タスクをRefinement Provenance Inference (RPI)として定式化する。
本稿では,ロジットレベルの信号で教師が強制する可能性機能を融合させるロジットベースのフレームワークであるReProを提案する。
トレーニング中、ReProはシャドウファインチューニングを通じて転送可能な表現を学び、訓練データアクセスなしで、見えない犠牲者の証明を推測するために軽量のリニアヘッドを使用する。
- 参考スコア(独自算出の注目度): 58.751981587234916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
- Abstract(参考訳): インストラクションチューニングはLSMベースのプロンプトリファインメントに依存し、トレーニングコーパスのプロンプトは外部リファインダーによって選択的に書き換えられ、明確さと命令アライメントが改善される。
微調整モデルとトレーニングプロンプト-レスポンスペアでは、モデルが元のプロンプトでトレーニングされたのか、または混合コーパス内でLLM-refinedバージョンでトレーニングされたのかを推測できますか?
これは、データセットのガバナンスとトレーニングデータに異議を唱える際の紛争解決に関する問題である。
しかし、実際には簡単ではない:精巧化と生のインスタンスは未知のソース依存の混合比でトレーニングコーパスにインターリーブされ、モデルとトレーニング設定をまたいで一般化する証明方法の開発が困難になる。
本稿では,この監査タスクをRefinement Provenance Inference (RPI) として形式化し,教師力のトークン分布において,意味的差異が明らかでない場合でも,迅速な改善が安定かつ検出可能な変化をもたらすことを示す。
この現象に基づいて,ロジットレベルの信号で教師に強制される可能性特徴を融合させるロジットベースのプロファイランスフレームワークReProを提案する。
トレーニング中、ReProはシャドウファインチューニングを通じて転送可能な表現を学び、訓練データアクセスなしで、見えない犠牲者の証明を推測するために軽量のリニアヘッドを使用する。
実証的には、ReProは一貫して強力なパフォーマンスを実現し、リライトスタイルのアーティファクトではなく、洗練された非依存的な分散シフトを活用することを示唆している。
関連論文リスト
- Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training [47.26632817047513]
大規模言語モデル(LLM)に推論タスクに適用された強化学習は、不安定な勾配推定によってボトルネックとなることが多い。
LLMのオンラインRLポストトレーニングのための適応型サンプリングフレームワークであるReinforce-Adaを提案する。
従来の2段階配置法とは異なり、Reinforce-Adaはオンライン連続除去プロセスにおける推定とサンプリングをインターリーブする。
論文 参考訳(メタデータ) (2025-10-06T16:34:09Z) - PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training [9.093854840532062]
PITAはLLMのトークン生成に直接好みフィードバックを統合する新しいフレームワークである。
PITAは、微調整をせずに、推論時にトークン確率を変更するための、小さな嗜好に基づくガイダンスポリシーを学習する。
我々は,数学的推論や感情分類など,多種多様なタスクにまたがるPITAを評価する。
論文 参考訳(メタデータ) (2025-07-26T21:46:32Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。