論文の概要: Prototype-Based Learning for Healthcare: A Demonstration of Interpretable AI
- arxiv url: http://arxiv.org/abs/2601.02106v1
- Date: Mon, 05 Jan 2026 13:34:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:23.151675
- Title: Prototype-Based Learning for Healthcare: A Demonstration of Interpretable AI
- Title(参考訳): 医療のためのプロトタイプベースの学習 : 解釈可能なAIの実証
- Authors: Ashish Rana, Ammar Shaker, Sascha Saralajew, Takashi Suzuki, Kosuke Yasuda, Shintaro Kato, Toshikazu Wada, Toshiyuki Fujikawa, Toru Kikutsuji,
- Abstract要約: プロトタイプベースの学習がこれらのニーズにどう対処できるかを示す。
提案するフレームワークであるProtoPalは,フロントエンドモードとバックエンドモードの両方を特徴としている。
- 参考スコア(独自算出の注目度): 7.069865219860801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
- Abstract(参考訳): 機械学習と説明可能なAIの最近の進歩にもかかわらず、パーソナライズされた予防医療にはギャップが残っている。
プロトタイプベースの学習がこれらのニーズにどう対処できるかを示す。
提案するフレームワークであるProtoPalは,フロントエンドモードとバックエンドモードの両方を特徴としている。
関連論文リスト
- Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
メタ表現予測符号化(MPC)と呼ばれる新しい予測符号化方式を提案する。
MPCは、並列ストリームにまたがる感覚入力の表現を予測することを学ぶことによって、感覚入力の生成モデルを学ぶ必要性を助長する。
論文 参考訳(メタデータ) (2025-03-22T22:13:14Z) - Selecting Interpretability Techniques for Healthcare Machine Learning models [69.65384453064829]
医療では、いくつかの意思決定シナリオにおいて、医療専門家を支援するために解釈可能なアルゴリズムを採用することが追求されている。
本稿では, ポストホックとモデルベースという8つのアルゴリズムを概説する。
論文 参考訳(メタデータ) (2024-06-14T17:49:04Z) - A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis [3.5280004326441365]
PatWay-Netは、敗血症患者の集中治療室への入院の予測を解釈するために設計されたMLフレームワークである。
本稿では,新しいタイプのリカレントニューラルネットワークを提案し,それを多層パーセプトロンと組み合わせて患者経路を処理する。
我々は、患者の健康状態、予測結果、関連するリスクを視覚化する包括的ダッシュボードを通じて、その実用性を実証する。
論文 参考訳(メタデータ) (2024-05-21T20:31:42Z) - Explainable AI for Fair Sepsis Mortality Predictive Model [3.556697333718976]
本稿では、性能最適化予測モデルを学習し、転送学習プロセスを用いて、より公正なモデルを生成する方法を提案する。
我々の手法は、予測モデル内のバイアスを特定し緩和するだけでなく、医療関係者間の信頼を高める。
論文 参考訳(メタデータ) (2024-04-19T18:56:46Z) - Interpretable Medical Image Classification using Prototype Learning and
Privileged Information [0.0]
解釈可能性はしばしば医療画像に必須の要件である。
本研究では,学習プロセスで利用可能な追加情報を用いて,理解しやすく強力なモデルを構築することができるかを検討する。
本稿では,カプセルネットワーク,プロトタイプ学習,特権情報の利用といったメリットを活用する,Proto-Capsと呼ばれる革新的なソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:28:59Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Collaborative Graph Learning with Auxiliary Text for Temporal Event
Prediction in Healthcare [16.40827965484983]
患者と患者の相互作用と医療領域の知識を探るための協調グラフ学習モデルを提案する。
私達の解決は患者および病気の構造特徴を捕獲できます。
提案手法の競合予測性能を示すために, 2つの重要な医療問題の実験を行った。
論文 参考訳(メタデータ) (2021-05-16T23:11:11Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Interpretability of machine learning based prediction models in
healthcare [8.799886951659627]
本稿では,医療分野における機械学習の実践的解釈可能性について概説する。
我々は、高度な医療問題において機械学習による意思決定を可能にするアルゴリズムソリューションの開発の重要性を強調した。
論文 参考訳(メタデータ) (2020-02-20T07:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。