論文の概要: EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
- arxiv url: http://arxiv.org/abs/2601.02163v1
- Date: Mon, 05 Jan 2026 14:39:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:23.227312
- Title: EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
- Title(参考訳): EverMemOS: 構造化長軸推論のための自己組織化メモリオペレーティングシステム
- Authors: Chuanrui Hu, Xingze Gao, Zuyi Zhou, Dannong Xu, Yi Bai, Xintong Li, Hui Zhang, Tong Li, Chong Zhang, Lidong Bing, Yafeng Deng,
- Abstract要約: 大きな言語モデル(LLM)は、長期の対話エージェントとしてますますデプロイされているが、その限られたコンテキストウィンドウは、拡張された相互作用よりもコヒーレントな振舞いを維持するのが困難である。
本稿では,EverMemOSについて紹介する。EverMemOSは,計算メモリにエミュレートされたライフサイクルを実装した自己組織型メモリオペレーティングシステムである。
EverMemOSは、メモリ拡張推論タスクで最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 42.339841548168565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
- Abstract(参考訳): 大きな言語モデル(LLM)は、長期の対話エージェントとしてますますデプロイされているが、その限られたコンテキストウィンドウは、拡張された相互作用よりもコヒーレントな振舞いを維持するのが困難である。
既存のメモリシステムは、しばしば孤立したレコードを格納し、フラグメントを検索する。
本稿では,EverMemOSについて紹介する。EverMemOSは,計算メモリのエグラムにインスパイアされたライフサイクルを実装した,自己組織型メモリオペレーティングシステムである。
エピソードトレース生成は、対話ストリームをMemCellsに変換し、エピソードトレース、原子的事実、時間境界フォレスト信号をキャプチャする。
Semantic Consolidationは、MemCellsをテーマのMemScenesに整理し、安定したセマンティック構造を蒸留し、ユーザプロファイルを更新する。
Reconstructive Recollectionは、下流の推論に必要な十分なコンテキストを構成するために、MemScene-guided Agentic Searchを実行する。
LoCoMoとLongMemEvalの実験によると、EverMemOSはメモリ拡張推論タスクで最先端のパフォーマンスを実現している。
さらに、PersonaMem v2のプロファイル研究と、ユーザプロファイリングやForesightといったチャット指向の能力を示す定性ケーススタディについて報告する。
コードはhttps://github.com/EverMind-AI/EverMemOSで入手できる。
関連論文リスト
- MemVerse: Multimodal Memory for Lifelong Learning Agents [35.218549149012844]
我々は,モデルに依存しないプラグアンドプレイメモリフレームワークであるMemVerseを紹介した。
MemVerseは階層的検索ベースのメモリで高速パラメトリックリコールを行う。
スケーラブルで適応的なマルチモーダルインテリジェンスを実現する。
論文 参考訳(メタデータ) (2025-12-03T10:06:14Z) - Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory [89.65731902036669]
Evo-Memoryは、大規模言語モデル(LLM)エージェントで自己進化型メモリを評価するための、ストリーミングベンチマークとフレームワークである。
10以上の代表的なメモリモジュールを評価し、10種類の多ターンゴール指向およびシングルターン推論およびQAデータセットで評価した。
論文 参考訳(メタデータ) (2025-11-25T21:08:07Z) - Evaluating Long-Term Memory for Long-Context Question Answering [100.1267054069757]
質問応答タスクにアノテートした合成長文対話のベンチマークであるLoCoMoを用いて,メモリ拡張手法の体系的評価を行う。
以上の結果から,メモリ拡張アプローチによりトークン使用率が90%以上削減され,競争精度が向上した。
論文 参考訳(メタデータ) (2025-10-27T18:03:50Z) - Mem-α: Learning Memory Construction via Reinforcement Learning [20.916677456417464]
大きな言語モデル(LLM)エージェントは、限られたコンテキストウィンドウによって制約される。
現在のメモリ拡張エージェントは、メモリ更新のための事前に定義された命令とツールに依存している。
Mem-alphaは、エージェントに複雑なメモリシステムを効果的に管理するように訓練する強化学習フレームワークである。
論文 参考訳(メタデータ) (2025-09-30T08:02:34Z) - Multiple Memory Systems for Enhancing the Long-term Memory of Agent [9.43633399280987]
MemoryBankやA-MEMといった既存の手法は、記憶されているメモリの質が劣っている。
我々は認知心理学理論にインスパイアされた多重記憶システムを設計した。
論文 参考訳(メタデータ) (2025-08-21T06:29:42Z) - MemOS: A Memory OS for AI System [116.87568350346537]
大規模言語モデル(LLM)は、人工知能(AGI)にとって不可欠な基盤となっている。
既存のモデルは、主に静的パラメータと短命なコンテキスト状態に依存しており、ユーザの好みを追跡したり、長い期間にわたって知識を更新する能力を制限する。
MemOSはメモリを管理可能なシステムリソースとして扱うメモリオペレーティングシステムである。
論文 参考訳(メタデータ) (2025-07-04T17:21:46Z) - MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models [31.944531660401722]
我々は,大規模言語モデル(LLM)用に設計されたメモリオペレーティングシステムであるMemOSを紹介する。
コアとなるMemCubeは、異種メモリの追跡、融合、マイグレーションを可能にする標準化されたメモリ抽象化である。
MemOSは、強力な制御性、適応性、進化性を備えたメモリ中心の実行フレームワークを確立する。
論文 参考訳(メタデータ) (2025-05-28T08:27:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。