論文の概要: LLM-Empowered Functional Safety and Security by Design in Automotive Systems
- arxiv url: http://arxiv.org/abs/2601.02215v1
- Date: Mon, 05 Jan 2026 15:37:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:23.252028
- Title: LLM-Empowered Functional Safety and Security by Design in Automotive Systems
- Title(参考訳): LLMを利用した自動車システムの設計による機能安全と安全
- Authors: Nenad Petrovic, Vahid Zolfaghari, Fengjunjie Pan, Alois Knoll,
- Abstract要約: 本稿では,セキュリティを意識したシステムトポロジ設計の側面と,イベント駆動意思決定コード解析について述べる。
コード分析には、機能安全性の体系的検証のための正式な基盤を提供するイベントチェーンモデルを採用しています。
トポロジーのセキュリティ面の分析は、モデル駆動工学(MDE)アプローチとオブジェクト制約言語(OCL)ルールとのシナジーに依存している。
- 参考スコア(独自算出の注目度): 27.082302648704708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents LLM-empowered workflow to support Software Defined Vehicle (SDV) software development, covering the aspects of security-aware system topology design, as well as event-driven decision-making code analysis. For code analysis we adopt event chains model which provides formal foundations to systematic validation of functional safety, taking into account the semantic validity of messages exchanged between key components, including both CAN and Vehicle Signal Specification (VSS). Analysis of security aspects for topology relies on synergy with Model-Driven Engineering (MDE) approach and Object Constraint Language (OCL) rules. Both locally deployable and proprietary solution are taken into account for evaluation within Advanced Driver-Assistance Systems (ADAS)-related scenarios.
- Abstract(参考訳): 本稿では,SDV(Software Defined Vehicle)ソフトウェア開発を支援するLLMを利用したワークフローを提案する。
コード分析には、CANとVine Signal Specification(VSS)を含む主要なコンポーネント間で交換されたメッセージの意味的妥当性を考慮して、機能安全の体系的検証のための公式な基盤を提供するイベントチェーンモデルを採用します。
トポロジーのセキュリティ面の分析は、モデル駆動工学(MDE)アプローチとオブジェクト制約言語(OCL)ルールとのシナジーに依存している。
ローカルにデプロイ可能なソリューションとプロプライエタリなソリューションの両方が、Advanced Driver-Assistance Systems(ADAS)関連のシナリオで評価される。
関連論文リスト
- When Safe Unimodal Inputs Collide: Optimizing Reasoning Chains for Cross-Modal Safety in Multimodal Large Language Models [50.66979825532277]
我々は、クロスモーダルチャレンジに適した解釈可能な推論パスを備えた最初のデータセットであるSSUI(Safe-Semantics-but-Unsafe-Interpretation)を紹介した。
新たなトレーニングフレームワークであるSRPO(Safety-Aware Reasoning Path Optimization)も、SSUIデータセットに基づいて設計されている。
実験の結果, SRPO学習モデルでは, キーセーフティベンチマークで最先端の結果が得られた。
論文 参考訳(メタデータ) (2025-09-15T15:40:58Z) - Towards Safety and Security Testing of Cyberphysical Power Systems by Shape Validation [42.350737545269105]
サイバー物理パワーシステムの複雑さは 攻撃面を大きくし 悪質なアクターに悪用される
我々は,これらのリスクを,サイバーパワーシステムを記述する宣言的アプローチで満たし,セキュリティと安全性の制御を自動的に評価することを提案する。
論文 参考訳(メタデータ) (2025-06-14T12:07:44Z) - UniSTPA: A Safety Analysis Framework for End-to-End Autonomous Driving [10.063740202765343]
我々はUnified System Theoretic Process Analysis (UniSTPA)フレームワークを提案する。
UniSTPAはコンポーネントレベルだけでなく、モデルの内部レイヤ内でもハザード分析を行います。
提案手法は,エンド・ツー・エンドの自動運転システムの安全開発と展開のための理論的および実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2025-05-21T01:23:31Z) - From Texts to Shields: Convergence of Large Language Models and Cybersecurity [15.480598518857695]
本稿では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
論文 参考訳(メタデータ) (2025-05-01T20:01:07Z) - Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems [39.23499993745249]
セマンティッククエリにおけるLLM出力に対する正当性条件を指定・強制するためのセマンティック整合性制約(SIC)を導入する。
SICは、従来のデータベース整合性制約をセマンティックセッティングに一般化し、グラウンド、サウンドネス、排他といった一般的なタイプの制約をサポートする。
本稿では,SICをクエリ計画と実行環境に統合するシステム設計について述べる。
論文 参考訳(メタデータ) (2025-03-01T19:59:25Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
我々は、構造化されていない知識と構造化されていない知識の両方を取り入れることで、MLLMベースの自動運転を強化するフレームワークであるSafeAutoを提案する。
安全知識を明示的に統合するため,交通ルールを一階述語論理に変換する推論コンポーネントを開発した。
我々のマルチモーダル検索・拡張生成モデルは、過去の運転経験から学ぶために、ビデオ、制御信号、環境特性を活用する。
論文 参考訳(メタデータ) (2025-02-28T21:53:47Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - SMT-Based Safety Verification of Data-Aware Processes under Ontologies
(Extended Version) [71.12474112166767]
我々は、このスペクトルで最も調査されたモデルの1つ、すなわち単純なアーティファクトシステム(SAS)の変種を紹介する。
このDLは適切なモデル理論特性を享受し、後方到達性を適用可能なSASを定義することができ、対応する安全問題のPSPACEにおける決定可能性をもたらす。
論文 参考訳(メタデータ) (2021-08-27T15:04:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。